
Modelowanie i eksploracja sieci
neuronów biologicznych w GENESIS

Uniwersytet Marii Curie-Skłodowskiej
Wydział Matematyki, Fizyki i Informatyki

Instytut Informatyki

Modelowanie i eksploracja
sieci neuronów biologicznych
w GENESIS

Grzegorz M. Wójcik

Lublin 2012

Instytut Informatyki UMCS
Lublin 2012

Grzegorz M. Wójcik
Modelowanie i eksploracja sieci neuronów
biologicznych w GENESIS

Recenzent: Andrzej Bobyk

Opracowanie techniczne: Marcin Denkowski
Projekt okładki: Agnieszka Kuśmierska

Praca współfinansowana ze środków Unii Europejskiej w ramach
Europejskiego Funduszu Społecznego

Publikacja bezpłatna dostępna on-line na stronach
Instytutu Informatyki UMCS: informatyka.umcs.lublin.pl.

Wydawca
Uniwersytet Marii Curie-Skłodowskiej w Lublinie
Instytut Informatyki
pl. Marii Curie-Skłodowskiej 1, 20-031 Lublin
Redaktor serii: prof. dr hab. Paweł Mikołajczak
www: informatyka.umcs.lublin.pl
email: dyrii@hektor.umcs.lublin.pl

Druk FIGARO Group Sp. z o.o. z siedzibą w Rykach
ul. Warszawska 10
08-500 Ryki
www: www.figaro.pl
–

ISBN: 978-83-62773-30-5

Spis treści

Wstęp ix

1 Modelowanie komórek nerwowych 1
1.1. Wprowadzenie . 2
1.2. Neuron biologiczny . 2
1.3. Rodzaje komórek nerwowych 4
1.4. Model Hodgkina–Huxleya . 9
1.5. Podsumowanie . 13
1.6. Zadania . 13

2 Instalacja i konfiguracja GENESIS 15
2.1. Wprowadzenie . 16
2.2. Przygotowanie do instalacji 16
2.3. Instalacja dodatków . 17
2.4. Edycja Makefile . 17
2.5. Kompilacja i instalacja . 22
2.6. Czynności poinstalacyjne . 24
2.7. Sprawdzenie instalacji . 25
2.8. Podsumowanie . 26
2.9. Zadania . 26

3 Podstawy języka skryptowego GENESIS 27
3.1. Wprowadzenie . 28
3.2. Program „Hello World” . 28
3.3. Deklaracje zmiennych . 29
3.4. Operatory i wyrażenia . 30
3.5. Instrukcja warunkowa . 31
3.6. Funkcje . 33
3.7. Pętla for . 34
3.8. Inne ważne polecenia . 36
3.9. Podsumowanie . 36
3.10. Zadania . 36

vi SPIS TREŚCI

4 Interfejs graficzny XODUS – podstawy 39
4.1. Wprowadzenie . 40
4.2. Praca z komórką – Neuron.g 40
4.3. Doświadczenia na kałamarnicy – Squid.g 43
4.4. Mechanizm uczenia – Hebb.g 45
4.5. Podsumowanie . 45
4.6. Zadania . 48

5 Modelowanie pojedynczej komórki nerwowej 49
5.1. Wprowadzenie . 50
5.2. Modelowanie ciała komórki 50
5.3. Wprowadzenie zegarów i jednostek SI 53
5.4. Wprowadzenie kanałów jonowych 56
5.5. Automatyzacja modelowania komórek 58
5.6. Zapis czasu powstawania piku 61
5.7. Podsumowanie . 62
5.8. Zadania . 62

6 Modelowanie prostych sieci neuronowych
w GENESIS 63
6.1. Wprowadzenie . 64
6.2. Tworzenie synaps . 64
6.3. Generator losowych pobudzeń 65
6.4. Sieć zbudowana z dwóch komórek 67
6.5. Sieć dwuwymiarowa I . 69
6.6. Sieć trójwymiarowa I . 72
6.7. Alternatywny sposób tworzenia sieci 2D 74
6.8. Podsumowanie . 75
6.9. Zadania . 76

7 Wizualizacja aktywności sieci 77
7.1. Wprowadzenie . 78
7.2. Przykładowa sieć . 78
7.3. Wizualizacja . 81
7.4. Podsumowanie . 82
7.5. Zadania . 82

8 Instalacja i konfiguracja PGENESIS 83
8.1. Wprowadzenie . 84
8.2. Instalacja zależności . 84
8.3. Instalacja MPICH2 . 84
8.4. Edycja Makefile . 86

SPIS TREŚCI vii

8.5. Kompilacja i instalacja . 90
8.6. Czynności poinstalacyjne . 91
8.7. Testowanie instalacji . 91
8.8. Podsumowanie . 92
8.9. Zadania . 92

9 Symulacje równoległe w PGENESIS 93
9.1. Wprowadzenie . 94
9.2. Dwa neurony . 94
9.3. Przykładowa sieć rozległa . 97
9.4. Kontrola symulacji . 100
9.5. Podsumowanie . 101
9.6. Zadania . 101

10 Dostosowywanie GENESIS 103
10.1. Wprowadzenie . 104
10.2. Prawdopodobieństwo egzocytozy 104
10.3. Edycja plików źródłowych . 104
10.4. Konsekwencje . 106
10.5. Podsumowanie . 107
10.6. Zadania . 107

11 Uwagi końcowe 109

A Ważniejsze modele autora 111
A.1. Model kory baryłkowej szczura 112
A.2. Model kory wzrokowej zawierającej maszyny LSM 112

B Rezultaty i publikacje autora 117
B.1. Ważniejsze rezultaty . 119
B.2. Streszczenia artykułów . 119

C Zdjęcia pamiątkowe 129

Spis rysunków 135

Bibliografia 137

Wstęp

W ciągu kilku dekad czyli od momentu kiedy komputery stały się po-
wszechne w uprawianiu nauki – modelowanie i symulacja komputerowa sta-
ły się jednymi z głównych narzędzi i metod badawczych wykorzystywanych
we wszystkich niemal dyscyplinach eksperymentalnych. W szczególności du-
że znaczenie ma prowadzenie eksperymentów in computo w naukach biolo-
gicznych. Często z powodów technologicznych, finansowych a nawet etycz-
nych zdecydowanie łatwiej i taniej jest podglądać zjawiska i zachowania
w modelu niż w żywym organizmie.
Ostatnie lata to również czas burzliwego rozwoju neuronauk, w tym neu-

ronauki obliczeniowej zwanej neurocybernetyką [1, 2]. Od dawna bowiem
istniały pokusy modelowania skomplikowanych układów biologicznych, jed-
nak dopiero komputery dały badaczom możliwość urzeczywistnienia ma-
rzeń. Tak też neurocybernetyka stała się nauką wkraczającą na pola innych
dyscyplin, takich jak psychologia, sztuczna inteligencja, medycyna [3], bio-
logia, systemy ekspertowe, nowe metody obliczeniowe, neurologia i wiele
innych [4, 5, 6, 7, 8, 9, 10, 11].
Do najbardziej skomplikowanych symulacji biologicznych należą bada-

nia zagadnień związanych z funkcjonowaniem mózgu lub wybranych jego
fragmentów [12, 13, 14, 15, 3, 16, 17, 18]. W przypadku człowieka, mózg za-
wierający sto miliardów komórek nerwowych, z których każda jest połączona
średnio z tysiącami innych stanowi najbardziej skomplikowany układ w zna-
nym Wszechświecie. Dlatego modelowanie i symulacja tego typu obiektów
stanowią nie lada wyzwanie.
Przedstawiono tu kurs programowania w środowisku GENESIS będącym

obecnie jednym z najlepszych narzędzi modelowania realistycznych biolo-
gicznie komórek nerwowych [19]. Książka przeznaczona jest dla studentów
specjalności neuroinformatycznych i pokrewnych. Stanowi też wprowadze-
nie do modelowania struktur biologicznych dla doktorantów podejmujących
problematykę neuronauki obliczeniowej. Wraz z pakietem GENESIS dostar-
czany jest anglojęzyczny podręcznik „The Book of GENESIS” [19], który
ze jednak względu na wysoki poziom zaawansowania może stanowić od-
straszającą barierę dla informatyków pragnących od podstaw drążyć pro-

x Wstęp

blematykę biologii obliczeniowej. Dlatego niniejszy skrypt powinien stano-
wić materiał przygotowawczy dla przyszłych neurocybernetyków i łagodnie
wprowadzić ich w tematykę zagadnienia.
W pierwszym rozdziale omówiono ideę modelowania neuronów biologicz-

nych.
Rozdział drugi prowadzi czytelnika przez skomplikowany proces kompi-

lacji ze źródeł oraz instalacji środowiska GENESIS w systemie operacyjnym
Ubuntu Linux.
W trzecim rozdziale omówiono podstawy języka skryptowego GENESIS,

podstawowe polecenia powłoki i strukturę języka.
Rozdział czwarty przedstawia podstawy środowiska graficznego XODUS.
W piątym rozdziale zaprezentowano na prostych przykładach modelo-

wanie pojedynczych komórek nerwowych, w szóstym zaś – prostych sieci
neuronowych.
Rozdział siódmy omawia prostą metodę wizualizacji symulowanych sieci

z wykorzystaniem bibliotek XODUS.
W rozdziale ósmym omówiono proces kompilacji wersji równoległej –

PGENESIS – symulatora na komputerze wielordzeniowym.
W rozdziale ósmym zaprezentowano metody równoleglizacji dużych sieci

neuronowych w PGENESIS.
Rozdział dziesiąty prezentuje sposoby modyfikowania kodu źródłowego

GENESIS w celu uzyskiwania nowych funkcjonalności.
Na końcu skryptu znajdują się dodatki, w których opisano podstawowe

modele, nad którymi w ostatnich latach autor prowadził swoje badania.
Zamieszczono również streszczenia najważniejszych artykułów opublikowa-
nych jako rezultat tych badań (Dodatek A). Ze względu na używaną termi-
nologię zdecydowano się na zamieszczenie streszczeń w języku angielskim.
Pozwoli to tym czytelnikom, którzy zdecydują się na kontynuowanie tych
lub podobnych badań na zapoznanie się z powszechnym w literaturze an-
glojęzycznej i związanym z tematem neuroobliczeń słownictwem (Dodatek
B). W Dodatku C zamieszczono zdjęcia, które z ważniejszych lub mniej
ważnych powodów mają dla autora istotne znaczenie.

Rozdział 1

Modelowanie komórek nerwowych

1.1. Wprowadzenie . 2
1.2. Neuron biologiczny . 2
1.3. Rodzaje komórek nerwowych 4
1.4. Model Hodgkina–Huxleya 9
1.5. Podsumowanie . 13
1.6. Zadania . 13

Zadanie 1 . 13

2 1. Modelowanie komórek nerwowych

1.1. Wprowadzenie

W tym rozdziale przedstawimy biologiczne podstawy związane z budo-
wą neuronów. Minimum wiedzy z zakresu biologii i neurofizjologii układu
nerwowego jest niezbędne do zrozumienia dalszych rozdziałów skryptu. Opi-
szemy zasadę działania pojedynczego neuronu, rodzaje komórek nerwowych
oraz model Hodgkina–Huxleya, według którego projektowane są numerycz-
ne modele neuronów oraz sieci neuronowych.

1.2. Neuron biologiczny

Tkanka nerwowa u ssaków, w tym u naczelnych rozsiana jest w całym
ciele, jednak największa jej część znajduje się w jamie czaszki (mózgowie)
i w kanale kręgowym (rdzeń kręgowy) tworząc ośrodkowy układ nerwowy.
Pozostała tkanka tworzy obwodowy układ nerwowy.
Podstawowym elementem budującym układ nerwowy jest neuron czyli

komórka nerwowa 1. Budowę typowego neuronu przedstawiono na Rys. 1.1
[20]. W dużym skrócie zasadę działania neuronu można przedstawić w bar-
dzo schematyczny i powtarzalny sposób. Najważniejszą częścią neuronu jest
ciało komórki (soma), w którym znajduje się jądro komórkowe i inne we-
wnątrzkomórkowe struktury. Posługując się terminologią komputerową ją-
dro komórki możemy przyrównać do procesora sterującego pracą neuronu
[20].
Do ciała komórki wchodzą dendryty (od kilku do kilkunastu tysięcy, nie-

kiedy przypominające drzewiaste struktury – stąd wywodzi się często spoty-
kana nazwa drzewo dendrytyczne). Dendryty stanowią wejścia do neuronu.
To do nich dochodzą sygnały od innych neuronów, które analizowane przez
jądro decydują o elektrycznym zachowaniu komórki. Skupiska ciał neuronów
nazywane są istotą szarą (ang. gray matter) stąd potoczna nazwa - „szare
komórki” [20].
Z kolei z ciała neuronu wychodzi akson, przewód przypominający swoją

zasadą działania drut. Jeżeli w pewnych okolicznościach sygnał napływają-
cy przez dendryty do ciała komórki jest wystarczająco silny to we wzgórku
aksonu wywoływane zostaje zaburzenie prowadzące do powstania tak zwa-
nego piku potencjału czynnościowego. Zmieniający się potencjał przepływa
wzdłuż aksonu (z prędkością od 4 do 120 m/s u ludzi – dzięki otoczce mieli-
nowej wokół aksonu, u bardziej prymitywnych zwierząt bez otoczki mielino-

1 Opis neuronu biologicznego oraz fragmenty opisu modelu Hodgkina–Huxleya za-
czerpnięto z monografii autora zatytułowanej „Obliczenia płynowe w modelowaniu mó-
zgu” [20]. W tym miejscu autor pragnie złożyć serdeczne podziękowania Panu Andrzejowi
Langowi z Akademickiej Oficyny Wydawniczej Exit za wyrażenie zgody na przytoczenie
niniejszego opisu.

1.2. Neuron biologiczny 3

Rysunek 1.1. Schemat neuronu biologicznego (za: [20])

4 1. Modelowanie komórek nerwowych

wej od 0,5 do 4 m/s) dochodząc do często wielokrotnie rozgałęzionego końca,
który może być połączony za pośrednictwem synaps z dendrytami innych
neuronów. Najdłuższe aksony u człowieka mają półtora metra długości (cią-
gną się np. od końców palców do kręgosłupa, a dzięki temu że nie tracimy
czasu na połączeniach z innymi komórkami – możemy stosunkowo szybko
cofnąć rękę w chwili oparzenia), jedne z najgrubszych (ok. 1 mm średnicy,
można z łatwością wbić w taki neuron elektrody i badać przepływ prądu)
posiada kałamarnica olbrzymia (ang. Giant Squid, łac. Giant loligo), dzięki
czemu udało się stworzyć empirycznie doskonały, opisywane w następnej
sekcji model dynamiki elektrycznej neuronu [20].
Sam przepływ potencjału wzdłuż włókna aksonu utrzymywany jest przez

działanie tak zwanych pomp jonowych, które w sprytny sposób zarządzają
przepychaniem dodatnich jonów sodu i potasu oraz ujemnych jonów chlo-
ru w obrębie neuronu i jego otoczenia. Istota biała (ang. white matter)
zbudowana jest z aksonów. Istota szara jest więc ośrodkiem przetwarzania
informacji, istota biała stanowi jedynie drogi nerwowe [20].
Mechanizm połączenia komórek nerwowych związany jest z bardzo skom-

plikowanym procesem neurochemicznym polegającym na przesyłaniu różne-
go rodzaju neuroprzekaźników pomiędzy kolbkami synaptycznymi tak zwa-
nego neuronu presynaptycznego i postsynaptycznego. Upraszczając nieco
sprawę możemy przyjąć, że nie każdy neuroprzekaźnik pasuje do każdej
kolbki synaptycznej, podobnie jak nie każdy klucz pasuje do każdego zamka.
Pewne neuroprzekaźniki powodują wzmocnienie sygnału (potrzeba wtedy
mniej neuroprzekaźnika do wywołania reakcji we wzgórku aksonu neuro-
nu docelowego), inne z kolei mają charakter hamujący, jeszcze inne (takie
jak dostarczane do organizmu przez narkotyki) – przez analogię – wywa-
żają drzwi rozrywając zamki. Wiele namacalnych wręcz zachowań takich
jak uczucie pobudzenia „po kawie”, ospałość, stan zakochania, upojenia
alkoholowego lub narkotycznego w dużym stopniu można wyjaśnić na dro-
dze analizy wzajemnego oddziaływania neuronów i wydzielanych przez nie
neuroprzekaźników [20].

1.3. Rodzaje komórek nerwowych

W różnych partiach mózgu, a w szczególności w korze mózgowej, znajdu-
ją się komórki o zróżnicowanej budowie, a co za tym idzie odmiennych funk-
cjach i właściwościach. Często różnice fizjologiczne komórek należy uwzględ-
niać przy budowie modelu. Istnieje wiele modeli neuronu. Jednym z najważ-
niejszych jest prosty model neuronu progowego uwzględniający podstawowe
cechy komórek. Bardziej złożony model Hodgkina-Huxleya znajduje zasto-
sowanie w wiernych symulacjach naśladowczych neuronów.

1.3. Rodzaje komórek nerwowych 5

Najprostszy pod względem formy jest neuron unipolarny, czyli jednobie-
gunowy (Rys. 1.2). Występuje głównie w drogach czuciowych. Jego ciało
w zasadzie nie bierze udziału w przewodzeniu sygnałów. Neurony unipolar-
ne charakteryzują się tym, że jedna wypustka dzieli się na jeden dendryt
i jeden akson. Neuron bipolarny (dwubiegunowy) (Rys. 1.3) odbiera sygna-
ły od innych komórek za pośrednictwem wielu dendrytów. W odpowiedzi
na sygnał wejściowy neuron dwubiegunowy wysyła pojedynczą odpowiedź
wzdłuż swojego aksonu. W korze mózgowej najwięcej jest neuronów pira-
midalnych (Rys. 1.4). Ich dendryty są zgrupowane w dwóch oddzielnych
pęczkach, a akson może dawać odgałęzienia wsteczne do dendrytów. Neu-
rony Golgiego (Rys. 1.5) występują w móżdżku i są odpowiedzialne za ko-
ordynację ruchów. Stanowią jedną z najbardziej skomplikowanych struktur
jaką mogą stworzyć dendryty i rozgałęziony akson. Neurony gwiaździste
(Rys. 1.6) z kory mózgowej są wyposażone w wypustki tworzące kulistą
formę przestrzenną. Ich rola w korze polega na przetwarzaniu i wysyłaniu
danych do pobliskich neuronów. W siatkówce oka istnieją komórki amokry-
nowe (Rys. 1.7). Nie posiadają aksonów. Przekazywane przez nie informacje
mają postać niewielkich zmian napięcia błony komórkowej. Neurony kłę-
buszkowe (Rys. 1.8) są komórkami opuszki węchowej leżącymi tuż nad jamą
nosową. Neurony Purkinjego (Rys. 1.9), jedne z największych i najbardziej
skomplikowanych komórek nerwowych, są położone w zewnętrznej warstwie
móżdżku, a ich aksony w jego głębi.

Rysunek 1.2. Neuron unipolarny (jednobiegunowy) (za: [21])

Przedstawiony podział komórek został przeprowadzony w oparciu o ich
kształt i złożoność. Istnieje jednak wiele innych podziałów neuronów, np.
ze względu na ich funkcje, właściwości fizykochemiczne czy połączenia ja-
kie tworzą z innymi komórkami. Nie będziemy szczegółowo przedstawiać
tej systematyki. Jedną z najważniejszych cech prawie wszystkich komórek
jest zdolność tworzenia tzw. mikroobwodów. Potwierdzenie m.in. przez gru-
pę Markrama istnienia takich struktur w korach prymitywnych ssaków jest
największym wydarzeniem w neurofizjologii w ostatnich latach. Okazuje się,
że komórki gromadzą się w grupach tworząc obwody zdolne do wykonywania
pewnych obliczeń. Chociaż budowa poszczególnych obwodów jest zbliżona,
to funkcja, którą pełnią, jest różna w zależności od miejsca występowa-
nia. Tak więc w poszczególnych polach kory wzrokowej znajdują się prawie

6 1. Modelowanie komórek nerwowych

Rysunek 1.3. Neuron bipolarny (dwubiegunowy) (za: [21])

Rysunek 1.4. Neuron piramidalny (za: [21])

1.3. Rodzaje komórek nerwowych 7

Rysunek 1.5. Neuron Golgiego (za: [21])

Rysunek 1.6. Neuron gwiaździsty (za: [21])

Rysunek 1.7. Komórka amokrynowa (za: [21])

8 1. Modelowanie komórek nerwowych

Rysunek 1.8. Neuron kłębuszkowy (za: [21])

Rysunek 1.9. Neuron Purkinjego (za: [21])

1.4. Model Hodgkina–Huxleya 9

identyczne mikroobwody zawierające nawet do kilku tysięcy komórek, ale
zadania jakie wykonują są całkiem odmienne.

1.4. Model Hodgkina–Huxleya

Przy tworzeniu modelu rzeczywistej komórki nerwowej jedną z podsta-
wowych trudności na jakie napotykamy jest konieczność uwzględnienia zło-
żoności fizjologicznej neuronu. Procesy przebiegające w kanałach jonowych
włókien nerwowych można opisać metodami fizyko-matematycznymi. Re-
gułą w tworzeniu modeli jest dokonywanie podziału włókien nerwowych
komórek na mniejsze, bardziej elementarne części składowe i opisywanie
każdej z nich odpowiednimi równaniami. Rozwiązując układy równań dla
poszczególnych części składowych komórki, można skutecznie modelować
zachowanie każdego z wyodrębnionych elementów, jak również ich wzajemne
oddziaływanie. Dzięki temu uzyskujemy dokładniejszy obraz symulowanego
neuronu. Model naśladujący rzeczywiste zachowania neuronu biologicznego
został opisany przez Hodgkina i Huxleya w 1952 r. i uhonorowany nagrodą
Nobla w dziedzinie medycyny w 1963 r. W modelu tym przyjęto, iż każdy
mały element neuronu można opisać przez ekwiwalentny obwód elektryczny.
Fizyczne zachowanie takiego obwodu odpowiada omawianym już procesom
zachodzącym w fragmentach rzeczywistych komórek. Formalnie obwód opi-
suje nieliniowe równanie różniczkowe. Takie podejście pozwala symulować
nawet bardzo skomplikowane neurony. Istnieją modele pojedynczych komó-
rek nerwowych, opisywane układem kilkudziesięciu tysięcy równań różnicz-
kowych [22, 23].
Badając neurony kałamarnicy olbrzymiej Hodgkin i Huxley stworzyli

teorię opisującą zachowania poszczególnych kanałów jonowych, połączeń sy-
naptycznych i oddziaływań pomiędzy poszczególnymi, sąsiadującymi ze so-
bą fragmentami włókien nerwowych (np. aksonów), a także podali przedzia-
ły parametrów elektrycznych, dla których model jest najbliższy rzeczywisto-
ści. Kryterium podziału neuronu na fragmenty powinno być to, czy w ekwi-
walentnych obwodach RC potencjał jest w przybliżeniu stały. Ponadto opór
między poszczególnymi obwodami powinien być tak dobrany, aby zachować
maksymalne podobieństwo do topologii dendrytów. Przykładowy podział
komórki nerwowej i jej reprezentację obwodem RC przedstawia rys. 1.10
[19, 22, 23]. Typowy obwód elektryczny odpowiadający fragmentowi włók-
na neuronowego przedstawia rys.1.11. Vm reprezentuje wartość potencjału
błony komórkowej1. Uziemienie odpowiada zewnętrznemu punktowi o ze-
rowym potencjale. Wprowadzenie kondensatora o pojemności Cm jest nie-
zbędne do modelowania zdysocjowanych roztworów przepływających przez
włókna komórki. W modelu procesowi przepływu jonów odpowiada łado-

10 1. Modelowanie komórek nerwowych

Rysunek 1.10. Model komórki nerwowej oraz schemat jej podziału na elementy
składowe (za: [19])

Rysunek 1.11. Element składowy neuronu jako obwód elektryczny. (za: [19])

1.4. Model Hodgkina–Huxleya 11

wanie i rozładowywanie kondensatora. Jeżeli potencjały V ′
m i V

′′
m są różne,

to kondensator rozładowuje się przez opór Ra. Może też nastąpić przepływ
prądu przez opór R′

a. Rezystor Gk o zmiennej oporności reprezentuje jed-
ną z wielu możliwych przewodności kanałów jonowych. Przewodności te
są specyficzne dla poszczególnych kombinacji jonów i neuronów. Wewnątrz
i na zewnątrz komórki panują różne koncentracje jonów. Wywołane różnicą
koncentracji ciśnienie osmotyczne powoduje, że jony dyfundują wzdłuż gra-
dientu koncentracji. W obwodzie elektrycznym zjawisko to jest modelowane
dzięki wprowadzeniu źródła prądu Ek. Potencjał, przy którym przepływ
prądu jest zatrzymany nazywa się potencjałem równowagowym Ek. Jeżeli
nie ma żadnego impulsu wchodzącego do komórki, to znaczy że komór-
ka nie ma połączeń z innymi neuronami. Wówczas posiada ona tak zwany
potencjał spoczynkowy Erest, który w naszym obwodzie wynosi Vm. Opór
błony komórkowej na rys. 1.11 oznaczono jako Rm . Opór ten w połączeniu
ze źródłem prądu Em odpowiada za utrzymanie zerowego potencjału w ka-
nałach jonowych. Z kolei Iinject reprezentuje natężenie prądu podawanego
z zewnątrz, który może pochodzić na przykład od elektrody umieszczonej
w ciele komórki [22, 23].
Zgodnie z prawem Kirchhoffa potencjał Vm spełnia nieliniowe równanie

różniczkowe [20]:

Cm
dVm

dt
= −

∑
k

Ik + Iinj.(t). (1.1)

Sumowanie odbywa się po wszystkich rodzajach kanałów jonowych występu-
jących w modelu. Dynamikę kanału upływowego reguluje niezależna od na-
pięcia przewodność. Przewodność pozostałych kanałów zależy od napięcia
i zmienia się w czasie. Przy otwartym kanale mamy do czynienia z mak-
symalnym możliwym przewodzeniem prądu gNa i gK . Zazwyczaj jednak
część kanałów jest zablokowana, a prawdopodobieństwo zablokowania opi-
sują dodatkowe zmiennem, n – dla kanałów sodowych, oraz h – dla kanałów
potasowych. Wykorzystując te zmienne, można wyznaczyć sumaryczny prąd
jonowy występujący w konkretnym obwodzie i zależność 1.1 przekształcić
w główne równanie Hodgkina–Huxleya 1.2 [20]:

Cm
dVm

dt
= − [GNam

3h(Vm − ENa)

+ GKn4(Vm − EK) +GL(Vm − EL)] + Iinj.(t). (1.2)

Nieznane funkcje m, n i h regulujące otwieranie kanałów jonowych można
dopasować w taki sposób, by odpowiadały danym doświadczalnym [20]:

dm

dt
= αm(Vm)(1−m)− βm(Vm)m, (1.3)

12 1. Modelowanie komórek nerwowych

dn

dt
= αn(Vm)(1− n)− βn(Vm)n, (1.4)

dh

dt
= αh(Vm)(1− h)− βh(Vm)h. (1.5)

Funkcje wykładnicze opisujące zachowanie α i β wyznaczono empirycznie
1.6–1.11 [20]:

αn(Vm) =
0, 01(Vm + 55)

[1− exp(−Vm + 55)/10]
, (1.6)

αm(Vm) =
0, 1(Vm + 40)

[1− exp(−(Vm + 40)/10)]
, (1.7)

αh(Vm) = 0, 07 exp [− (Vm + 65)/20)], (1.8)

βn(Vm) = 0, 125 exp [− (Vm + 65)/80], (1.9)

βm(Vm) = 4 exp [− (Vm + 65)/18], (1.10)

βh(Vm) =
1

1 + exp [− (Vm + 35)/10]
. (1.11)

Stałe występujące we wzorach pobrano bezpośrednio z neuronów kałamar-
nicy olbrzymiej. W temperaturze 280 K przyjmują one wartości [20]:

GNa=120 mS/cm2, GK=36 mS/cm2, GL=0,3 mS/cm2, ENa=50 mV,
EK=–77 mV, EL=–54 mV, Cm=1 µF/cm2 [19, 22, 23].
Układy równań typu 1.2–1.11 można rozwiązywać tylko numerycznie.

Należy pamiętać, że równania 1.1–1.11 opisują zachowanie tylko jednego,
wyodrębnionego fragmentu neuronu. Układy równań modelujące całą ko-
mórkę stanowią więc opis wzajemnego oddziaływania sąsiadujących ze sobą
fragmentów. Podobne równania Hodgkina–Huxleya z empirycznie wyzna-
czonymi parametrami odwzorowują działanie każdej synapsy i stosuje się je
podczas konstruowania modeli zawierających więcej niż jedną komórkę. Sto-
pień komplikacji równań sprawia, że model Hodgkina–Huxleya jest bardzo
kosztowny obliczeniowo [23].
Mimo, że zachowania grup elementów mikroskopowych takich jak kanały

jonowe lub neurotransmitery są opisywane przy pomocy wielkości makrosko-
powych (opór elektryczny, przewodność), to rezultaty są bardzo bliskie rze-
czywistości. Świadczy to o wyjątkowej użyteczności modelu, a w wielu pro-
wadzonych obecnie badaniach wciąż korzysta się z prac Hodgkina–Huxleya
datowanych na lata pięćdziesiąte ubiegłego stulecia [20].
Przykładem modelowania pojedynczych, bardzo złożonych komórek, są

prace prowadzone przez grupę Erika De Schuttera. Symulowano w nich poje-
dynczą komórkę Purkinjego (rys. 2.15). Drzewo dendrytów w modelowanej
komórce zawiera kilkadziesiąt tysięcy elementów i wypustek. Elementy te

1.5. Podsumowanie 13

oddziałują elektrycznie między sobą. Przestrzenna mapa rozłożenia poten-
cjałów w symulowanej strukturze przedstawia rys. 1.12. Pojedyncza komór-
ka Purkinjego posiada pewne zdolności obliczeniowe. Impulsy potencjału
podawane na wejście takiej komórki ulegają transformacji w drzewie jej den-
drytów. Drzewo dendrytów posiada zdolności pamiętania impulsów, które
wcześniej przezeń przechodziły. Zdolności te można następnie porównywać
ze zdolnościami klasyfikacyjnymi SSN [24].

Rysunek 1.12. Wizualizacja komórki Purkinjego z prac Erika De Schuttera [23]

1.5. Podsumowanie

Przedstawiono zasadę działania neuronu biologicznego, podstawowe typy
komórek nerwowych i teorię Hodgkina–Huxleya jako najlepszą z zapropono-
wanych do tej pory, stosowaną do tworzenia realistycznych biologicznie mo-
deli pojedynczych komórek nerwowych i biologicznych sieci neuronowych.

1.6. Zadania

Zadanie 1

Narysuj schematycznie schemat neuronu i podstawowych typów komó-

14 1. Modelowanie komórek nerwowych

rek nerwowych, a następnie zaproponuj ich podział do stworzenia modelu
według teorii Hodgkina–Huxleya.

Rozdział 2

Instalacja i konfiguracja GENESIS

2.1. Wprowadzenie . 16
2.2. Przygotowanie do instalacji 16
2.3. Instalacja dodatków . 17
2.4. Edycja Makefile . 17
2.5. Kompilacja i instalacja 22
2.6. Czynności poinstalacyjne 24
2.7. Sprawdzenie instalacji 25
2.8. Podsumowanie . 26
2.9. Zadania . 26

Zadanie 1 . 26
Zadanie 2 . 26

16 2. Instalacja i konfiguracja GENESIS

2.1. Wprowadzenie

Dla początkujących użytkowników systemu operacyjnego Linux instala-
cja i konfiguracja środowiska GENESIS może się okazać zadaniem trudnym.
Celem niniejszego rozdziału jest przeprowadzenie czytelników przez proces
kompilacji i instalacji symulatora w typowych konfiguracjach. Systemem
operacyjnym, w którym zainstalujemy GENESIS będzie Ubuntu 10.04 LTS.
Zdecydowano się na mającą już ponad rok wersję tej popularnej dystrybu-
cji ze względu na długi czas wsparcia oferowany przez firmę Canonical.
Niemniej jednak w nowszych wersjach Ubuntu opisywany proces kompilacji
i instalacji przebiega praktycznie rzecz ujmując w identyczny sposób.

2.2. Przygotowanie do instalacji

Najnowszą, stabilną wersję GENESIS oznaczono numerem 2.3. Od kilku
lat prowadzone są prace nad zupełnie nową pod względem filozofii imple-
mentacji wersją środowiska oznaczoną 3.0, jednak póki co dostępne źródła
są w fazie testowania i w czasie pisania niniejszego podręcznika nie dyspo-
nujemy jeszcze na przykład możliwością zrównoleglenia GENESIS w wycze-
kiwanej wersji trzeciej. Nowa wersja, według zapowiedzi, powinna działać
znacznie szybciej i oferować nieco więcej możliwości modelowania kompart-
mentowego (w tym Hodgkina–Huxleya). Jednak składnia poleceń i zasady
budowania modeli występujące we wcześniejszych wersjach nie ulegną zmia-
nie.
Przed instalacją GENESIS 2.3 powinniśmy zaopatrzyć się w jego źródła.

Najlepiej będzie pobrać je ze strony symulatora znajdującej się pod ad-
resem http://sourceforge.net/projects/genesis-sim/. Domyślnie pro-
ponowana jest kompilacja przygotowana dla systemu Mac OS X. My jed-
nak powinniśmy podążać za łączem Other versions - Browse all files
i pobrać plik genesis-2.3-src.tar.gz z katalogu /Source/2.3 Final. Przy
okazji warto zdobyć plik z równoległą wersją GENESIS. Należy więc pobrać
archiwum pgenesis-2.3-src.tar.gz.
Proponujemy rozpakować oba pliki do katalogu domowego użytkownika.

W naszym przypadku będziemy posługiwać się katalogiem /home/studen-
t/. Po skopiowaniu obu archiwów do katalogu domowego w konsoli systemu
wykonujemy następujące polecenia:

gunzip genesis-2.3-src.tar.gz
tar xvf genesis-2.3-src.tar
gunzip pgenesis-2.3-src.tar.gz
tar xvf pgenesis-2.3-src.tar

2.3. Instalacja dodatków 17

Po wykonaniu przytoczonych tu poleceń użytkownik powinien mieć w ka-
talogu domowym rozpakowane źródła zarówno GENESIS w wersji szerego-
wej genesis-2.3/genesis/ jak i równoległej genesis-2.3/pgenesis/.

2.3. Instalacja dodatków

W tym rozdziale będziemy zajmować się tylko kompilacją klasycznej tj.
szeregowej wersji symulatora.
Przed przystąpieniem do pracy powinniśmy doinstalować do systemu

niezbędne aplikacje i biblioteki. W przeciwnym przypadku proces kompilacji
zakończy się fiaskiem. Problemy związane z niezgodnością wersji poszcze-
gólnych bibliotek w różnych dystrybucjach systemów Linux/Unix są naj-
częstszą przyczyną niepowodzeń instalacji GENESIS. W przypadku Ubun-
tu sprawę da się rozwiązać stosunkowo łatwo. Podobnie daje się to uczynić
we wszelkich dystrybucjach wywodzących się z rodziny Debiana. Zatem nie-
zbędne dodatki instalujemy wykonując w konsoli Linuksa polecenie:

sudo apt-get install bison flex libncurses5-dev libxt-dev

Jeżeli instalacja niezbędnych rozszerzeń zakończy się pomyślnie – można
przystąpić do edycji pliku Makefile.

2.4. Edycja Makefile

W plikuMakefile definiujemy wszelkie niezbędne opcje kompilacji, cha-
rakterystyczne dla naszego systemu operacyjnego. Omawiany plik będzie
znajdował się w katalogu genesis-2.3/genesis/src/, do którego najpierw
powinniśmy się dostać, a następnie sam plik przygotować. Zakładając, że
znajdujemy się w katalogu domowym użytkownika, wydajemy następujące
polecenia:

cd genesis-2.3/genesis/src

W katalogu tym znajduje się między innymi plik Makfile.dist, który ko-
piujemy do pliku o nazwie Makefile, a następnie edytujemy:

cp Makefile.dist Makefile
gedit Makefile

Do edycji pliku tekstowego możemy użyć dowolnego edytora zamiast do-
myślnego notatnika powłoki Gnome. Czasami (na przykład instalując GE-
NESIS na zdalnym serwerze, który nie oferuje środowiska graficznego) je-
steśmy wręcz skazani na posługiwanie się edytorami pracującymi w trybie
tekstowym, takimi jak emacs, vi, vim albo mcedit.

18 2. Instalacja i konfiguracja GENESIS

Należy odkomentować sekcję odpowiadającą systemowi operacyjnemu
Linux przez usunięcie znaków # z początków każdej linii. Odpowiedni frag-
ment pliku Makefile powinien zatem wyglądać następująco dla systemu
32-bitowego:

~
System: Linux 1.2.x and up on Intel x86-based, Xeon,
and AMD 64-bit systems.
Compiler: GCC
~

2000-05-23
Termcap/ncurses issues: The shell library makes reference
termcap library. Some Linux distributions have an ncurse
which includes termcap emulation. GENESIS appears to wor
properly with the ncurses supplied with Red Hat Linux 5.1
and Debian Linux (glibc2.1, egcs-2.91.66). However, link
ncurses is known to have resulted in core dumps in GENESI
Linux versions.
##
If you encounter problems linking with the TERMCAP flags
or the GENESIS command line interface does not work, try
following alternatives:
##
1) TERMCAP = -ltermcap
##
2) (If you are using SuSE Linux)
TERMCAP = /usr/lib/termcap/libtermcap.a
##
3) (If you are using Red Hat Linux prior to version 6.0)
TERMCAP = /usr/lib/libtermcap.a
##

MACHINE=Linux
OS=BSD

XINCLUDE=-I/usr/X11R6/include

Choose ONE XLIB line to uncomment:
For 32-bit architectures
XLIB=/usr/X11R6/lib
For 64-bit machines, probably need /usr/X11R6/lib64 here.

2.4. Edycja Makefile 19

XLIB=/usr/X11R6/lib64

CC=cc

Old (and probably broken) gcc installations may need the
path to cpp (preferably NOT one in /lib). If there isn’t
[link to] cpp in the same directory as ’cc’, you should c
[re]installing a newer gcc.

CPP=cpp -P

Choose ONE CFLAGS line to uncomment:
For 32-bit architectures
CFLAGS=-O2 -D__NO_MATH_INLINES
For 64-bit architectures
CFLAGS=-O2 -D__NO_MATH_INLINES -DLONGWORDS

LD=ld

!!!
Don’t uncomment the next line unless you get errors about
libraries not being found. Setting this path may interfer
the default (probably correct) operation of the loader, b
64-bit architectures may need /usr/lib64 here.
LDFLAGS=-L/usr/lib

RANLIB=ranlib
AR=ar

YACC=bison -y
LEX=flex -l
LEXLIB=-lfl
Some linuxes (Gentoo?) may require -lSM and -lICE as well
LIBS= $(LEXLIB) -lm

TERMCAP=-lncurses
TERMOPT=-DTERMIO -DDONT_USE_SIGIO

end Linux 1.2.x and up on Intel x86-based systems

W przypadku instalacji GENESIS w systemie 64-bitowym odpowiedni frag-
ment pliku Makefile wygląda następująco:

20 2. Instalacja i konfiguracja GENESIS

~
System: Linux 1.2.x and up on Intel x86-based, Xeon,
and AMD 64-bit systems.
Compiler: GCC
~

2000-05-23
Termcap/ncurses issues: The shell library makes reference
termcap library. Some Linux distributions have an ncurse
which includes termcap emulation. GENESIS appears to wor
properly with the ncurses supplied with Red Hat Linux 5.1
and Debian Linux (glibc2.1, egcs-2.91.66). However, link
ncurses is known to have resulted in core dumps in GENESI
Linux versions.
##
If you encounter problems linking with the TERMCAP flags
or the GENESIS command line interface does not work, try
following alternatives:
##
1) TERMCAP = -ltermcap
##
2) (If you are using SuSE Linux)
TERMCAP = /usr/lib/termcap/libtermcap.a
##
3) (If you are using Red Hat Linux prior to version 6.0)
TERMCAP = /usr/lib/libtermcap.a
##

MACHINE=Linux
OS=BSD

XINCLUDE=-I/usr/X11R6/include

Choose ONE XLIB line to uncomment:
For 32-bit architectures
XLIB=/usr/X11R6/lib
For 64-bit machines, probably need /usr/X11R6/lib64 here.
XLIB=/usr/X11R6/lib64

CC=cc

Old (and probably broken) gcc installations may need the

2.4. Edycja Makefile 21

path to cpp (preferably NOT one in /lib). If there isn’t
[link to] cpp in the same directory as ’cc’, you should c
[re]installing a newer gcc.

CPP=cpp -P

Choose ONE CFLAGS line to uncomment:
For 32-bit architectures
CFLAGS=-O2 -D__NO_MATH_INLINES
For 64-bit architectures
CFLAGS=-O2 -D__NO_MATH_INLINES -DLONGWORDS

LD=ld

!!!
Don’t uncomment the next line unless you get errors about
libraries not being found. Setting this path may interfer
the default (probably correct) operation of the loader, b
64-bit architectures may need /usr/lib64 here.
LDFLAGS=-L/usr/lib

RANLIB=ranlib
AR=ar

YACC=bison -y
LEX=flex -l
LEXLIB=-lfl
Some linuxes (Gentoo?) may require -lSM and -lICE as well
LIBS= $(LEXLIB) -lm

TERMCAP=-lncurses
TERMOPT=-DTERMIO -DDONT_USE_SIGIO

end Linux 1.2.x and up on Intel x86-based systems

W czynnościach przedinstalacyjnych pozostała do zrobienia jeszcze jedna
ważna rzecz, bez której proces kompilacji w Ubuntu 10.04 (ale i w now-
szych wersjach) zakończy się niepowodzeniem. Należy otworzyć plik gene-
sis/src/sim/sim notes.c w dowolnym edytorze tekstu i zakomentować
linię 54. Przed wstawieniem komentarza linia 54 wygląda następująco:

#include <unistd.h>

22 2. Instalacja i konfiguracja GENESIS

Ponieważ plik sim notes.c to w rzeczywistości program napisany w języku
C++ – komentarz wstwaiamy przez dopisanie na początku linii podwójnego
znaku //. Możemy też dopisać informację o tym, kto wstawił komentarz,
żeby w przyszłości z łatwością odnaleźć wprowadzone zmiany. Po dodaniu
komentarza linia 54. może wyglądać tak:

//#include <unistd.h> //by gmwojcik

Między innymi takie zabiegi jak powyższy sprawiają, że instalacja GE-
NESIS ze źródeł może stanowić nie lada wyzwanie. Autor pamięta czasy, kie-
dy kompilując środowisko dla nietypowych systemów klasy UNIX niekiedy
mijały tygodnie, zanim poprawne rozwiązanie udawało się wdrożyć. Należy
pamiętać, że GENESIS jest rozwijany od 1986 roku. Ćwierć wieku w infor-
matyce to więcej niż cała epoka. Jest rzeczą naturalną, że przez tak wiele
lat musiały pojawić się mniejsze lub większe niezgodności w bibliotekach,
kompilatorach i w systemie jako takim. Tym większy podziw i satysfakcję
powinna wzbudzać poprawnie przeprowadzona instalacja ze źródeł.

2.5. Kompilacja i instalacja

Po prawidłowym wykonaniu wszystkich czynności przedinstalacyjnych
możemy przystąpić do procesu kompilacji środowiska. W tym celu powinni-
śmy przejść do katalogu zawierającego źródła. Bez względu na to, w którym
miejscu znajdowaliśmy się aktualnie – wykonanie poniższych poleceń prze-
niesie nas w pożądane teraz miejsce:

cd
cd genesis-2.3/genesis/src

Właściwy proces kompilacji rozpoczynamy wydając dwa polecenia:

make clean
make all

Należy uzbroić się w cierpliwość. W starszych systemach kompilacja trwała
około pół godziny. W dzisiejszych czasach, nawet na komputerach osobi-
stych, proces ten nie powinien zająć dłużej niż 5 minut.
Jeżeli wszystko pójdzie dobrze (a powinno!) po kilku minutach z gąszczu

wyjściowych komunikatów konsoli naszym oczom powinien ukazać się tekst
marzeń:

All Libs Compiled
cc -O2 -D__NO_MATH_INLINES -Dnetcdf -DFMT1 -DINCSPRNG
-L/usr/lib sim/simlib.o sys/utillib.o ss/ss.o shell/s
helllib.o par/parlib.o buffer/buflib.o segment/seglib

2.5. Kompilacja i instalacja 23

.o hh/hhlib.o device/devlib.o out/outlib.o olf/olflib

.o tools/toollib.o concen/conclib.o hines/hineslib.o
user/userlib.o param/paramlib.o pore/porelib.o oldcon
n/axon/axonlib.o oldconn/synapse/synlib.o oldconn/per
sonal/perlib.o oldconn/sim/simconnlib.o oldconn/tools
/toolconnlib.o diskio/interface/netcdf/netcdflib.o di
skio/interface/netcdf/netcdf-3.4/src/libsrc/libnetcdf
.a diskio/interface/FMT1/FMT1lib.o diskio/diskiolib.o
kinetics/kinlib.o newconn/newconnlib.o loadlib.o Xodu
s/_xo/xolib.o Xodus/_widg/widglib.o Xodus/_draw/drawl
ib.o Xodus/Draw/libDraw.a Xodus/Widg/libWidg.a Xodus/
Xo/libXo.a -L/usr/X11R6/lib -lXt -lX11 -lfl -lm sprng
/lib/liblfg.a -lncurses -o genesis
Full GENESIS Compiled -- All Done

Tak skompilowaną wersję GENESIS należy teraz zainstalować wykonu-
jąc polecenie:

make install

Jeżeli instalacja zakończy się sukcesem otrzymamy komunikat:

Done with full install

Po zainstalowaniu GENESIS można przejść do czynności poinstalacyjnych.
Zanim to uczynimy pragniemy poinformować czytelników o możliwości

kompilacji i instalacji GENESIS na komputerach nie oferujących środowiska
graficznego X-Windows. Taka sytuacja występuje prawie zawsze wtedy gdy
korzystamy z klastrów obliczeniowych, w tym z wersji równoległej PGENE-
SIS. Między innymi ze względów bezpieczeństwa administratorzy nieczęsto
decydują się na instalowanie okienek w superkomputerach. Co zatem zro-
bić w przypadku, gdy GENESIS podczas kompilacji sporo czasu poświęca
na przetwarzanie plików o nazwach rozpoczynających się od „X-”? Jako do-
brą wiadomość podajemy, że istnieje możliwość kompilacji i instalacji oma-
wianego środowiska z pominięciem grafiki, oferującego tylko tryb tekstowy.
W tym celu należy wykonać wszelkie powyższe przedinstalacyjne zabiegi,
włącznie z edycją pliku Makefile.
Sama kompilacja i instalacja przebiega po wydaniu poleceń:

make clean
make nxall
make nxinstall

W przypadku Ubuntu istnieje jeszcze jeden, banalny sposób zainstalowania
GENESIS. Wystarczy tylko wykonać polecenie:

24 2. Instalacja i konfiguracja GENESIS

sudo apt-get install genesis

by cieszyć się działającą wersją środowiska 2.3 bez konieczności wykonywa-
nia wszystkich czynności, o których mowa od początku rozdziału. W sytu-
acji, gdy użytkownicy zamierzają przeprowadzać symulacje na komputerze
osobistym, bez wykorzystania obliczeń równoległych taka instalacja w zu-
pełności wystarcza. Autor jednak stanowczo zachęca do kompilacji symula-
tora bezpośrednio ze źródeł. Umożliwia to nie tylko łatwe późniejsze uak-
tualnienie do wersji równoległej, ale również daje możliwość bezpośredniej
ingerencji w „serce” środowiska, co umożliwia wbudowywanie weń nowych
funkcjonalności. No i jeszcze ta satysfakcja. . . ;−)

2.6. Czynności poinstalacyjne

Po zakończonej sukcesem instalacji wykonujemy czynności poinstalacyj-
ne. Najpierw należy skopiować do katalogu domowego plik konfiguracyjny
.simrc albo w przypadku wersji bez X-Windows plik .nxsimrc. W tym
celu wykonujemy następujące polecenia:

cd
cp genesis-2.3/genesis/startup/.simrc .

ewentualnie:

cd
cp genesis-2.3/genesis/startup/.nxsimrc .

Następnie warto dodać ścieżkę do katalogu, w którym znajduje się skompi-
lowany GENESIS do pliku .bashrc w taki sposób, aby z każdego miejsca
w systemie w łatwy sposób dało uruchamiać się skrypty. W tym celu otwie-
ramy plik konfiguracyjny powłoki w dowolnym edytorze tekstu, np. gedit:

cd
gedit .bashrc

i na samym końcu dopisujemy linię:

export PATH=$PATH:/home/student/genesis-2.3/genesis/

gdzie zamiast słowa student wpisujemy nazwę katalogu domowego użyt-
kownika.
Z punktu widzenia dalszych rozważań wygodnie będzie mieć zainstalo-

wane w systemie narzędzie do wizualizacji wyników. Idealnym kandydatem
wydaje się tu być gnuplot. Poza tym wygodnie będzie wzbogacić system
o starego dobregoMidnight Commandera i na przykład kultowy edytor
tekstu emacs. Wykonanie polecenia:

2.7. Sprawdzenie instalacji 25

sudo apt-get install gnuplot mc emacs

dopełni dzieła instalacji GENESIS w środowisku programisty systemu Ubun-
tu Linux 10.04.

2.7. Sprawdzenie instalacji

Poprawnie zainstalowany GENESIS uruchamiamy z dowolnego miejsca
w systemie wykonując polecenie:

genesis

Uwaga: ze względu na konieczność załadowania utworzonej przed chwilą
ścieżki dostępu należy zamknąć terminal i otworzyć go na nowo.
Jeżeli wszystko przebiegło dobrze to oczom użytkownika powinien uka-

zać się ekran podobny do Rys. 2.1 Pozostaje nam jeszcze sprawdzić czy

Rysunek 2.1. Konsola nowozainstalowanego GENESIS.

środowisko zainstalowało się również poprawnie w trybie graficznym. W tym
celu wykonujemy polecenia:

cd
cd genesis-2.3/genesis/Scripts/squid
genesis Squid.g

Jeżeli pojawią się staroświeckie okienka i panele kontrolne symulacji - mo-
żemy nacisnąć przycisk RUN, aby otrzymać efekt podobny do Rys. 2.2.
Przycisk QUIT powoduje wyjście z tej przykładowej symulacji.

26 2. Instalacja i konfiguracja GENESIS

Rysunek 2.2. Nowozaistalowane GENESIS uruchomiony w trybie graficznym.

2.8. Podsumowanie

Przedstawiono proces kompilacji i instalacji środowiska GENESIS v. 2.3
ze źródeł w systemie operacyjnym Ubuntu 10.04 LTS.

2.9. Zadania

Zadanie 1

Zainstaluj ze źródeł środowisko GENESIS 2.3 na domowym komputerze.

Zadanie 2

Zainstaluj oprogramowanie przydatne do pracy w GENESIS.

Rozdział 3

Podstawy języka skryptowego
GENESIS

3.1. Wprowadzenie . 28
3.2. Program „Hello World” 28
3.3. Deklaracje zmiennych 29
3.4. Operatory i wyrażenia 30
3.5. Instrukcja warunkowa 31
3.6. Funkcje . 33
3.7. Pętla for . 34
3.8. Inne ważne polecenia 36
3.9. Podsumowanie . 36
3.10. Zadania . 36

Zadanie 1 . 36
Zadanie 2 . 36
Zadanie 3 . 37
Zadanie 4 . 37
Zadanie 5 . 37
Zadanie 6 . 37

28 3. Podstawy języka skryptowego GENESIS

3.1. Wprowadzenie

W tym rozdziale zapoznamy się z podstawami programowania w języ-
ku skryptowym GENESIS – SLI (ang. Script Language Interpreter). Język
ten, którego składnia nieco przypomina C++, sprawia, że GENESIS jest
od dwóch dekad jednym z najlepszych środowisk służących modelowaniu
i symulacji zarówno pojedynczych komórek nerwowych jak i rozległych sieci
neuronowych wielkiej skali.

3.2. Program „Hello World”

Poszczególne polecenia powłoki GENESIS można wydawać bezpośrednio
z konsoli symulatora. Nie jest to jednak wygodne rozwiązanie, dlatego że
stworzenie dużego modelu wymagałoby bezbłędnego wydania kilkudziesię-
ciu albo kilkuset poleceń. Nietrudno przewidzieć, że w przypadku popełnie-
nia błędu ewentualna jego poprawa byłaby żmudnym albo i niewykonalnym
zadaniem. Dlatego skrypty GENESIS powinno się pisać w zwykłych plikach
tekstowych (z rozszerzeniem .g) wykorzystując dowolny edytor, na przykład
emacs, mcedit albo gedit.
Jako pierwszy program w GENESIS uczynimy to co uczynić powinni

wszyscy programiści poznający nowy język programowania. Napiszemy pro-
gram Hello World zapisując w pliku hello.g następujące polecenie:

echo "Hello World"

Skrypt uruchamiamy przez wykonanie polecenia w konsoli systemu Linux1

(nie GENESIS):

genesis hello.g

Po wykonaniu komendy uruchamia się środowisko GENESIS i po załadowa-
niu plików konfiguracyjnych w konsoli symultaora pojawiają się następujące
wiersze:

Simulation Script: hello.g
Hello World
genesis #0 >

Czytelnik, który dokonał powyższego może już uznać się za programistę
GENESIS :-).

1 W tym miejscu mniej zaawansowanym użytkownikom systemu Linux polecamy
skrypt pod tytułem „Środowisko programisty” [25], w którym w sposób szczegółowy
omówiono nie tylko poruszanie się po konsoli systemowej lecz również przedstawiono wiele
aplikacji, które mogą przydać się w codziennym użytkowaniu Ubuntu.

3.3. Deklaracje zmiennych 29

3.3. Deklaracje zmiennych

W kolejnym kroku zapoznamy się z deklaracjami zmiennych występują-
cymi w GENESIS. Na początku proponujemy stworzyć skrypt zawierający
następujące linie:

echo "Demonstracja zmiennych."

float dt, dx, dy, dz
int i, j, k
float pi=3.1415
int alfa=137

dx = 1e-6
dy = 2e-6
dz = 0.005

i = 7
j = 13
k = 666

echo dx dy dz dt
echo i j k

echo {dx} {dy} {dz} {dt}
echo {i} {j} {k}

Znaczenie polecenia echo jest intuicyjne, analizując pierwszy przedstawio-
ny tu program wiemy, że służy ono do wyświetlania tekstów na ekranie.
Użycie cudzysłowów nie jest to obowiązkowe, jednak będziemy go stosować
ze względów estetycznych. Zmienne mogą być nazywane przy pomocy cią-
gów liter, cyfr i znaku podkreślenia, przy czym nazwa powinna zaczynać się
od litery. Zmienne typu rzeczywistego deklarujemy przy użyciu dyrektywy
float, a całkowitego – int. W analizowanym programie zadeklarowaliśmy
zmienne rzeczywiste: dt, dx, dy, dz, pi oraz całkowite: i, j, k i alfa. Zmiennym
można przypisywać wartości zarówno podczas inicjacji jak też w dowolnym
miejscu programu. Przyjemna jest też możliwość przypisywania zmiennym
wartości przy pomocy zapisów dziesiętnych typu 1e-4.
Jednym z aspektów sprawiających wiele trudności na początku pracy

z GENESIS jest zagadnienie użycia nawiasów klamrowych. Otóż przedsta-
wiony przykład pokazuje wprost, iż wyświetlenie zawartości zmiennej dajmy
na to dx przy pomocy polecenia echo nastąpi tylko wtedy gdy ujmiemy ją
w nawiasy klamrowe. Polecenie echo dx spwoduje tylko wyświetlenie w kon-

30 3. Podstawy języka skryptowego GENESIS

soli napisu dx. Innymi słowy, żeby dobrać się do zawartości zmiennej należy
użyć nawiasów klamrowych. Używamy ich zatem przy okazji wyświetlania
na ekran, przy przekazywaniu argumentów do funkcji i w innych wymaga-
jących tego sytuacjach. Czasami, kiedy jednoznacznie wiadomo, że mamy
do czynienia z zawartością zmiennej, a nie z napisem – nawiasy klamrowe
można opuścić (na przykład w warunku albo w nagłówku pętli, ale o tym
później).
Wykonanie skryptu powinno doprowadzić do wyświetlenia na ekranie

konsoli GENESIS następujących wierszy:

Simulation Script: zmienne.g
Demonstracja zmiennych.
dx dy dz dt
i j k
1e-06 2e-06 0.005 0
7 13 666
genesis #0 >

Prosimy czytelników o wnikliwe przeanalizowanie treści skryptu oraz wyniku
jego działania.

3.4. Operatory i wyrażenia

Kolejny skrypt przedstawia działanie operatorów dodawania, odejmowa-
nia, mnożenia i dzielenia w GENESIS.

echo "Demonstracja zmiennych i operatorow."

float dt, dx, dy, dz
int i, j, k
float pi=3.1415
int alfa=137

dx = 1e-6
dy = 2e-6
dz = 0.005

i = 7
j = 13
k = 666

echo dx dy dz dt
echo i j k

3.5. Instrukcja warunkowa 31

echo {dx} {dy} {dz} {dt}
echo {i} {j} {k}

echo {2*dx+2*dy+2*dz}
echo {(i-j)*(i+k)/13}
echo {(i-j)*(i+k)/13.0}

Warto zauważyć, że do grupowania działań matematycznych tak jak w więk-
szości szanujących się języków programowania służą nawiasy okrągłe. Ostat-
nie dwie linijki skryptu różnią się tylko dzielnikiem – w pierwszym przypad-
ku trzynastka jest zapisana klasycznie, w drugim jakoby wymuszamy branie
jej pod uwagę jako liczby rzeczywistej przez dodanie rozwinięcia dziesięt-
nego .0. Ponieważ zmienne i,j,k są całkowite to pierwsze dzielenie będzie
dzieleniem całkowitym, drugie zaś jako wynik da liczbę rzeczywistą.
Efektem działania skryptu będzie wyświetlenie następujących wierszy:

Simulation Script: operatory.g
Demonstracja zmiennych i operatorow.
dx dy dz dt
i j k
1e-06 2e-06 0.005 0
7 13 666
0.010006
-310
-310.6153846
genesis #0 >

Czytelników uprasza się o wnikliwe przeanalizowanie treści skryptu oraz
wyniku jego działania.

3.5. Instrukcja warunkowa

W tej sekcji przedstawimy składnię instrukcji warunkowej. Prezentowa-
ny skrypt sprawdza czy zmienna ma wartość większą od 15, a następnie
zmienia jej wartość i dokonuje następnego porównania – tym razem z liczbą
64. Instrukcja warunkowa w GENESIS zawiera kluczowe słowa if, else oraz
słowo ją kończące end. Dla pewności treść warunków zapisujemy w na-
wiasach. Przy okazji warto wspomnieć, że operatory logiczne w instrukcji
warunkowej działają tak jak w języku C++, to jest koniunkcja – &&, alter-
natywa – ||, negacja – !, porównanie – == no i relacje >, <, >= oraz <=.
Należy pamiętać o logicznym stosowaniu nawiasów podczas konstruowania

32 3. Podstawy języka skryptowego GENESIS

warunków i jak dobrą radę przyjąć, że lepiej jest mieć o jedną parę nawiasów
za dużo niż za mało.

echo "Demonstracja instrukcji IF ELSE."

echo "zadeklarujemy x=16."
int x = 16

echo "wchodzimy do instrukcji warunkowej i dostajemy:"

if (x>15)
echo "x jest wieksze od 16"
else
echo "x jest mniejsze albo rowne 16."
end

echo "a teraz ustawimy x=64."

x = 64

echo "wchodzimy do podobnej instrukcji warunkowej i dostajemy:"
if (x>64)
echo "x jest wieksze od 64."
else
echo "x jest mniejsze albo rowne 64."
end

Efektem działania przedstawionego skryptu są następujące wiersze:

Simulation Script: if.g
Demonstracja instrukcji IF ELSE.
zadeklarujemy x=16.
wchodzimy do instrukcji warunkowej i dostajemy:
x jest wieksze od 16
a teraz ustawimy x=64.
wchodzimy do podobnej instrukcji warunkowej i dostajemy:
x jest mniejsze albo rowne 64.
genesis #0 >

Czytelników prosimy o rzetelne zapoznanie się z treścią skryptu i wynikiem
jego działania.

3.6. Funkcje 33

3.6. Funkcje

Język skryptowy GENESIS umożliwia korzystanie z funkcji. Wykorzy-
stujemy tu kluczowe słowo function, a koniec implementacji funkcji ozna-
czamy słowem end. W definicji funkcji – wszystkie argumenty umieszczamy
oddzielone przecinkami w nawiasie. Należy jednak pamiętać, że bezpośred-
nio pod identyfikatorem funkcji musimy podać typy jej argumentów dekla-
rując odpowiednie zmienne.
Popuściwszy wodze wyobraźni postanowiliśmy określić rozwiązywalność

równania kwadratowego wykorzystując funkcję napisaną w GENESIS i ob-
liczającą wyróżnik trójmianu kwadratowego (a co!). Treść całego skryptu
prezentuje się następująco:

function wyroznik(a, b, c)
int a,b,c, delta

delta = {b*b-4*a*c}

if (delta > 0)
echo "delta = " {delta} ", beda dwa rozwiazania!"
else
if (delta == 0)
echo "delta = " {delta} ", bedzie jedno rozwiazanie!"
else
echo "delta = " {delta} ",nie bedzie rozwiazan!"
end
end

end // funkcji

echo "Rownanie kwadratowe - wersja light w GENESIS."

int a=1
int b=-2
int c=1

wyroznik {a} {b} {c}

wyroznik 2 3 4

wyroznik 3 16 1

34 3. Podstawy języka skryptowego GENESIS

echo "KONIEC"

Funkcja w programie wywoływana jest trzykrotnie dla przypadków: A =
1, B = −2, C = 1; A = 2, B = 3, C = 4; A = 3, B = 16, C = 1. Za każ-
dym razem funkcja informuje nas o liczbie rozwiązań określonego w zadany
sposób równania kwadratowego. Uwaga: podczas wywoływania funkcji listę
argumentów wprowadzamy bez nawiasów, oddzielając je spacjami. Pamię-
tamy też o rozsądnym stosowaniu nawiasów klamrowych.
Wynik działania skryptu przedstawiają poniższe wiersze:

Simulation Script: delta.g
Rownanie kwadratowe - wersja light w GENESIS.
delta = 0 , bedzie jedno rozwiazanie!
delta = -23 ,nie bedzie rozwiazan!
delta = 244 , beda dwa rozwiazania!
KONIEC
genesis #0 >

Czytelnicy zechcą zwrócić uwagę na zagnieżdżoną instrukcję warunkową wy-
stępującą w ciele funkcji oraz na treść całego skryptu w odniesieniu do wy-
ników jego działania.

3.7. Pętla for

Bardzo przydatną instrukcją, zwłaszcza przy tworzeniu sieci wielu neu-
ronów, jest pętla for. Nagłówek pętli przypomina składnię języka C++,
należy jednak pamiętać, że całość zakończona jest kluczowym słowem end.
Przykładowy program wykorzystujący pętlę for przedstawia listing:

echo "Demonstracja dzialania petli FOR."

int i

for (i=1; i<=10; i=i+1)
echo {i}
end

Ten kawałek kodu powoduje wyświetlenie na ekranie kolejnych liczb całko-
witych od 1 do 10. Wynikiem działania skryptu ilustrującego działanie pętli
for jest więc:

Simulation Script: for.g
Demonstracja dzialania petli FOR.
1

3.7. Pętla for 35

2
3
4
5
6
7
8
9
10
genesis #0 >

Dla treningu możemy teraz napisać skrypt, który wyświetli na ekranie
kolejne (pierwsze 9) wyrazy ciągu Fibonacciego (jak szaleć to szaleć!).

echo "Ciag Fibonacciego w GENESIS"

int licznik, a0, a1, a2

a0 = 0
a1 = 1

echo {a0}
echo {a1}

for (licznik = 1; licznik < 8; licznik = licznik + 1)

a2 = a0 + a1
echo {a2}

a0 = a1
a1 = a2

end

Efektem działania skryptu będzie wyświetlenie ciągu liczb całkowitych, z któ-
rych pierwsze dwie to 0 i 1, a każda następna jest sumą dwóch bezpośrednio
ją poprzedzających:

Simulation Script: fibon.g
Ciag Fibonacciego w GENESIS.
0
1
1
2

36 3. Podstawy języka skryptowego GENESIS

3
5
8
13
21
genesis #0 >

Petle for podobnie jak instrukcje warunkowe mogą być wielokrotnie zagnież-
dżone. Należy tylko pamiętać o blokowaniu instrukcji przy pomocy słówka
end. czytelnicy proszeni są o uważne zapoznanie się z przykładami użycia
pętli for.

3.8. Inne ważne polecenia

Istnieje jeszcze wiele ważnych instrukcji języka skryptowego GENESIS.
Autor starał się przedstawić tylko te najważniejsze, niezbędne do rozpoczę-
cia pracy z symulatorem. W miarę wprowadzania nowych treści – kolejne
instrukcje będą przemycane do świadomości czytelników. Warto tu wspo-
mnieć, że GENESIS posiada sprawnie działający mechanizm obsługi plików
tekstowych, generator liczb pseudolosowych, a informacja między poszcze-
gólnymi elementami modelu przesyłana jest za pomocą wiadomości (ang.
messages).

3.9. Podsumowanie

W tym rozdziale przedstawiono najważniejsze instrukcje skryptowego
języka GENESIS. czytelnicy po zapoznaniu się z treścią niniejszego roz-
działu powinni już potrafić deklarować zmienne, wyświetlać ich zawartość
na ekranie, korzystać z instrukcji warunkowej oraz pętli. Do konstruowania
warunków potrafią wykorzystywać operatory relacji oraz logiczne.

3.10. Zadania

Zadanie 1

Napisz skrypt w GENESIS wyświetlający na ekranie kilka zwrotek Two-
jej ulubionej piosenki.

Zadanie 2

Przepisz ze zrozumieniem wszystkie skrypty z niniejszego rozdziału i sprawdź
czy wynik ich działania jest taki jak przedstawiony w treści.

3.10. Zadania 37

Zadanie 3

Napisz dowolny skrypt prezentujący działanie instrukcji warunkowej.

Zadanie 4

Napisz skrypt wyświetlający na ekranie dziesięć wyrazów ciągu arytme-
tycznego o zadanym pierwszym wyrazie i różnicy.

Zadanie 5

Napisz skrypt wyświetlający na ekranie dwanaście wyrazów ciągu geo-
metrycznego o zadanym pierwszym wyrazie i ilorazie.

Zadanie 6

Wykorzystując zagnieżdżone pętle for napisz skrypt wyświetlający wy-
razy tabliczki mnożenia z zakresu od 1× 1 do 10× 10.

Rozdział 4

Interfejs graficzny XODUS – podstawy

4.1. Wprowadzenie . 40
4.2. Praca z komórką – Neuron.g 40
4.3. Doświadczenia na kałamarnicy – Squid.g 43
4.4. Mechanizm uczenia – Hebb.g 45
4.5. Podsumowanie . 45
4.6. Zadania . 48

Zadanie 1 . 48
Zadanie 2 . 48
Zadanie 3 . 48

40 4. Interfejs graficzny XODUS – podstawy

4.1. Wprowadzenie

W tym rozdziale będzie więcej rysunków niż treści. Standardowy GENE-
SIS oferuje użytkownikowi pracę w środowisku graficznym o nazwie XODUS
(ang. X-Windows Output Display Utility System). Warto zwrócić uwagę
na swego fantazję twórców środowiska – oto bowiem GENESIS to biblijna
Księga Rodzaju, XODUS - Księga Wyjścia. Dla porządku podamy jeszcze,
że grupa dyskusyjna użytkowników GENESIS nosi nazwę BABEL.
XODUS sporo potrafi jednak ze względu na swój wiek wygląda tak, że

może podobać się tylko najbardziej zagorzałym fanom komputerów Commo-
dore 64. Obecnie sami w dowolnym języku programowania możemy napisać
sobie programy lepiej wizualizujące aktywność komórek, a także w zaawan-
sowanych edytorach ustawiać parametry symulacji.
Jednak przez szacunek dla twórców pakietu pokażemy trzy najbardziej

widowiskowe modele wykorzystujące środowisko graficzne XODUS.

4.2. Praca z komórką – Neuron.g

Na początku pobawimy się pojedynczą komórką. W tym celu należy
dostać się do katalogu genesis/Scripts/neuron i wykonać polecenie:

genesis Neuron.g

Powinien wyświetlić się zestaw oldschoolowych okienek (Rys. 4.1-4.3),
wśród których najważniejszy jest panel sterowania control (Rys. 4.1). Sy-
mulację uruchamiamy wciskając przycisk step. W ten sposób możemy bawić
się bez końca pamiętając jednak, że przed ponownym uruchomieniem należy
wcisnąć przycisk reset (tylko nie ten na obudowie komputera!).
Odpowiednie różowe przyciski przy wykresach pozwalają zmienić skalę

dla wyświetlanych na osiach wartości. Możemy poeksperymentować z warto-
ściami prądów podawanych na poszczególne komórki, po czym wyjść z mo-
delu wciskając przycisk quit.

Rysunek 4.1. Panel sterowania symulacją Neuron.g

4.2. Praca z komórką – Neuron.g 41

Rysunek 4.2. Wykresy aktywności wejścia, przewodności oraz potencjału dendrytu
w symulacji Neuron.g

42 4. Interfejs graficzny XODUS – podstawy

Rysunek 4.3. Wykresy parametrów aktywacji kanałów HH, przewodności oraz po-
tencjału błony komórkowej w symulacji Neuron.g

4.3. Doświadczenia na kałamarnicy – Squid.g 43

4.3. Doświadczenia na kałamarnicy – Squid.g

Eksperymenty na neuronach kałamarnicy z doświadczeń Hodgkina i Hux-
leya wykonujemy na modelu znajdującym się w katalogu genesis/Script-
s/squid:

genesis Squid.g

Tu przyciskiem uruchamiającym symulację jest run znajdujący się w pa-
nelu sterowania control (Rys. 4.4). Warto również przetestować zachowa-
nie modelu zmieniając parametry w rozmaitych polach, pamiętając jednak
o tym, że w przestarzałych interfejsach tego typu po dokonaniu zmiany
trzeba nacisnąć klawisz enter na klawiaturze komputera i to w chwili, gdy
kursor myszki znajduje się nad edytowanym polem. Przycisk quit podob-
nie jak poprzednio służy do zamknięcia wszystkich okienek i opuszczenia
modelu.

Rysunek 4.4. Panel sterowania symulacją Squid.g

Rysunek 4.5. Kontrola kanałów sodowych i potasowych w symulacji Squid.g

44 4. Interfejs graficzny XODUS – podstawy

Rysunek 4.6. Kontrola impulsów wejściowych w symulacji Squid.g

Rysunek 4.7. Kontrola zewnętrznych stężeń jonowych w symulacji Squid.g

Rysunek 4.8. Wykresy aktywności wejścia oraz potencjału błony, przewodności
i prądu w kanałach jonowych w symulacji Squid.g

4.4. Mechanizm uczenia – Hebb.g 45

4.4. Mechanizm uczenia – Hebb.g

Ciekawy przykład modelu obrazującego mechanizm uczenia według Do-
nalda Hebba znajduje się w katalogu genesis/Scripts/examples/hebb,
uruchamiany przez:

genesis hebb.g

Symulację rozpoczynamy przez wciśnięcie przycisku run na panelu sterowa-
nia control (Rys. 4.9). Oprócz innych ciekawych wielkości warto przyjrzeć
się wykresowi zmiany wagi synapsy Hebba (Rys. 4.13). Waga ta najpierw
narasta powoli, potem następuje gwałtowny wzrost, po czym ma miejsce wy-
raźne wysycenie. Zupełnie jak w życiu, gdzie przyswajanie jakiejś konkretnej
wiedzy na początku idzie nam opornie, potem szybko uczymy się wraz z do-
świadczeniem nowych rzeczy, ale żeby dojść do perfekcji i mistrzowskiego
poziomu, na przykład w opanowaniu języka – mijają całe lata.

Rysunek 4.9. Panel sterowania symulacją Hebb.g

4.5. Podsumowanie

Przedstawiono zarys możliwości pracy z interfejsem graficznym XODUS
symulatora GENESIS. Szczegółowy opis tworzenia poszczególnych okienek
oraz znaczenie obecnych w nich elementów znajduje się w [19]

46 4. Interfejs graficzny XODUS – podstawy

Rysunek 4.10. Wykres przewodności kanału w symulacji Hebb.g

Rysunek 4.11. Wykres aktywności presynaptycznej w symulacji Hebb.g

4.5. Podsumowanie 47

Rysunek 4.12. Wykres aktywności postsynaptycznej w symulacji Hebb.g

Rysunek 4.13. Wykres zmieniającej się wagi synaptycznej w symulacji Hebb.g

48 4. Interfejs graficzny XODUS – podstawy

4.6. Zadania

Zadanie 1

Przetestuj model Neron.g. Zmieniaj skale wykresów i parametry sy-
mulacji w taki sposób, żeby zaobserwować jakiekolwiek różnice. Nie musisz
zagłębiać się w neurofizjologię komórek.

Zadanie 2

Przetestuj model Squid.g. Zmieniaj skale wykresów i parametry symu-
lacji w taki sposób, żeby zaobserwować jakiekolwiek różnice. Nie musisz
zagłębiać się w neurofizjologię komórek.

Zadanie 3

Przetestuj model hebb.g. Zmieniaj skale wykresów i parametry symu-
lacji w taki sposób, żeby zaobserwować jakiekolwiek różnice. Nie musisz
zagłębiać się w neurofizjologię komórek.

Rozdział 5

Modelowanie pojedynczej komórki
nerwowej

5.1. Wprowadzenie . 50
5.2. Modelowanie ciała komórki 50
5.3. Wprowadzenie zegarów i jednostek SI 53
5.4. Wprowadzenie kanałów jonowych 56
5.5. Automatyzacja modelowania komórek 58
5.6. Zapis czasu powstawania piku 61
5.7. Podsumowanie . 62
5.8. Zadania . 62

Zadanie 1 . 62
Zadanie 2 . 62
Zadanie 3 . 62

50 5. Modelowanie pojedynczej komórki nerwowej

5.1. Wprowadzenie

Celem rozdziału jest nauczenie czytelników modelowania pojedynczej ko-
mórki nerwowej. Naukę rozpoczynamy od modelowania tylko ciała komórki
bez uwzględniania standardowych jednostek układu SI. Następnie wprowa-
dzamy te jednostki i definiujemy zegary sterujące krokami poszczególnych
aspektów symulacji. W kolejnym podrozdziale wprowadzamy kanały jonowe
do modelowanego ciała komórki. Czytelnicy poznają również zasady zapisy-
wania wartości potencjału błony komórkowej do pliku oraz czasu pojawiania
się potencjałów czynnościowych na symulowanej komórce. Na zakończenie
pokazana jest przykładowa konstrukcja bardziej złożonej komórki z wyko-
rzystaniem metody Cell Reader. Wyniki prostych symulacji wizualizujemy
w programie gnuplot.

5.2. Modelowanie ciała komórki

Skrypty GENESIS zapisywane są w plikach, którym tradycyjnie nadaje-
my rozszerzenie .g. Przykłady omawiane w tym rozdziale zadziałają nawet
wtedy, gdy każde polecenie wydamy bezpośrednio z wiersza poleceń środo-
wiska. Przypominamy, że nie jest to jednak zalecane ze względu na fakt,
iż w razie pomyłek może zdarzyć się konieczność ponownego wpisywania
wszystkiego od początku. Dlatego polecamy zapisać nasze rozważania w pli-
ku o nazwie np. 1cell.g, a następnie z poziomu konsoli systemu Linux uru-
chamiać skrypty wykonując polecenie:

genesis 1cell.g

pamiętając, żeby wcześniej przejść do katalogu, w którym znajduje się skrypt.
Budowę modelu pojedynczej komórki nerwowej rozpoczynamy od tak

zwanej definicji elementu neutralnego:

create neutral /cell

Element neutralny o dowolnej nazwie, w tym przypadku cell, będzie ele-
mentem nadrzędnym nad wszystkimi pozostałymi elementami wchodzącymi
w skład modelowanej komórki. W przypadku odwoływania się do komórki
będziemy podawać nazwę elementu neutralnego. Ciało oraz dendryty ko-
mórki będą znajdowały się w strukturze modelu niejako pod elementem
neutralnym, podobnie jak zagnieżdżone podkatalogi w dowolnym katalogu
systemu plików.
W następnym kroku definiujemy ciało komórki jako takie. Tu obowiąz-

kowo należy użyć zarezerwowanej nazwy soma.

create compartment /cell/soma

5.2. Modelowanie ciała komórki 51

Ustawiamy wartości pól odpowiadających parametrom Hodgkina–Huxleya
odpowiednio na Rm = 10, Cm = 2, Em = 25 oraz Iinj. = 5, na razie nie
zawracając sobie głowy jednostkami układu SI.

setfield /cell/soma Rm 10 Cm 2 Em 25 inject 5

Następnie zapewniamy zapis uzyskanych w symulacji wartości potencjału
elektrycznego błony komórkowej do pliku tekstowego soma1.vm.

create asc_file /soma_potential
setfield /soma_potential filename soma1.vm append 0
addmsg /cell/soma /soma_potential SAVE Vm

W powyższym fragmencie kodu należy zwrócić uwagę na skojarzenie obiek-
tu soma potential z plikiem tekstowym (pierwsza linia), ustawienie pa-
rametrów w poszczególnych polach obiektu skojarzonego z plikiem (w tym
fizycznej nazwy pliku na dysku – linia druga) oraz w trzeciej linii wysłanie
wiadomości z ciała komórki do zmiennej skojarzonej z plikiem tekstowym
przy jednoczesnym wydaniu dyrektywy SAVE dla potencjału błony Vm.
Pod koniec każdego skryptu warto sprawdzić czy zaprojektowane przez

nas struktury tworzą poprawną logicznie całość:

check

oraz zresetować inicjacyjne parametry komórek:

reset

Polecenie step służy do wykonania zadanej jako parametr liczby kroków
symulacji:

step 100

Warto zapewnić powrót ze skryptu do powłoki systemu Linux wydając po-
lecenie:

quit

Gotowy skrypt przyjmie teraz postać:

create neutral /cell
create compartment /cell/soma

setfield /cell/soma Rm 10 Cm 2 Em 25 inject 5

create asc_file /soma_potential
setfield /soma_potential filename soma1.vm append 0
addmsg /cell/soma /soma_potential SAVE Vm

52 5. Modelowanie pojedynczej komórki nerwowej

check
reset
step 100

quit

przy czym od początku warto pamiętać o systematycznym komentowaniu
poszczególnych linijek tworzonych programów.
Uruchamiamy skrypt poleceniem:

genesis 1cell.g

GENESIS uruchamia się, wykonuje 100 kroków symulacji, po czym wraca
do konsoli systemowej. Jeżeli wszystko zadziałało poprawnie to w katalogu,
w którym rezyduje skrypt powinien pojawić się nowy plik soma1.vm.
Program gnuplot jest doskonałym narzędziem do wizualizowania zwra-

canych przez GENESIS plików. W tym celu przygotujemy skrypt, który
wykreśli nam zawartość otzrymanego z symulacji pliku i wyeksportuje gra-
fikę do pliku postscriptowego wykres1.eps

set term postscript enhanced monochrome
set grid
set xlabel "t"
set ylabel "V_{m}"

set output "wykres1.eps"
plot "soma1.vm" u 1:2 w l t "V_{m}"

Skrypt gnuplot uruchamiamy wykonując polecenie:

gnuplot nazwa_skryptu_gnuplotowego

bezpośrednio z konsoli Linuksa. Należy pamiętać o wcześniejszym zainstalo-
waniu gnuplota, ale o tym była już mowa przy okazji instalacji i konfiguracji
GENESIS. Przytoczony skrypt zapewnia, że na wykresie pojawi się eleganc-
ka siatka, osie będą odpowiednio podpisane i wykreślimy drugą kolumnę
pliku soma1.vm względem pierwszej nadając powstałej krzywej właściwy
podpis Vm w legendzie.
Na Rys. 5.1 stosunkowo niewiele się dzieje. Ponieważ nie zaimplemento-

waliśmy jeszcze kanałów jonowych obserwujemy tylko narastanie potencjału
w kolejnych stu krokach symulacji. Nie mamy jeszcze uwzględnionej norma-
lizacji do standardowych jednostek układu SI, zatem można powiedzieć, że
wzrost wartości Vm w czasie jest wręcz zbyt „elegancki”.

5.3. Wprowadzenie zegarów i jednostek SI 53

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 0 10 20 30 40 50 60 70 80 90 100

V
m

t

Vm

Rysunek 5.1. Potencjał błony komórkowej bez kanałów jonowych i bez uwzględ-
nienia jednostek SI.

5.3. Wprowadzenie zegarów i jednostek SI

Wierniejsza symulacja ciała pojedynczej komórki wymaga uwzględnienia
jednostek układu SI oraz zainicjowania poszczególnych zmiennych w modelu
oryginalnymi wartościami z teorii Hodgkina–Huxleya. W tym celu na po-
czątku skryptu z ulepszonym modelem dodajemy blok instrukcji:

float PI = 3.14159

// Parametry ciala komorki w jednostkach SI
float RM = 0.33333 // opor blony (ohm m^2)
float CM = 0.01 // pojemnosc (farad/m^2)
float RA = 0.3 // opor aksjalny (ohm m)
float EREST_ACT = -0.07 // potenc. spoczynkowy (volt)
float Eleak = EREST_ACT + 0.0106 // potenc. uplywu (volt)
float ENA = 0.045 // potenc. rown. sodowy
float EK = -0.082 // potenc. rown. potasowy

// wymiary komorki (m)
float soma_l = 30e-6 // dlugosc walca
float soma_d = 30e-6 // srednica walca

gdzie w formie komentarzy opisano znaczenie poszczególnych parametrów.

54 5. Modelowanie pojedynczej komórki nerwowej

Kolejnym krokiem wzbogacającym omawiany model i ważnym posunię-
ciem z punktu widzenia uruchamiania symulacji w GENESIS jest definicja
kroku czasowego symulacji oraz ustawienie tak zwanych zegarów. Mniejszy
krok symulacji prowadzi do dokładniejszych wyników. Niestety związane jest
to z wydłużeniem czasu obliczeń. Twórcy modeli powinni skupić się zatem
na optymalnym doborze kroku symulacji, który godzi dokładność rezulta-
tów z akceptowalnym czasem przebiegu symulacji. Do ustawienia głównego
zegara modelu używa się poleceń, gdzieś na początku skryptu:

float dt = 0.00005 // krok symulacji w sek.
setclock 0 {dt} // glowny zegar symulacji

przy czym można definiować wiele zegarów numerowanych kolejnymi liczba-
mi całkowitymi. Później przekonamy się, że inne zegary mogą być wykorzy-
stane do prowadzenia symulacji jako takie (rozwiązywania układów równań
różniczkowych), a inne na przykład do zapisywania wyników na dysk. W ten
sposób można zapewnić wierne obliczenia i rzadsze próbkowanie. Często ta-
kie podejście jest wręcz wskazane.
Przyszła pora, by na prostym przykładzie nauczyć się definiować funk-

cje w GENESIS. Stworzymy funkcję, która przyjmując kilka parametrów
stworzy z nich element modelowanej komórki nerwowej:

function makecompartment(path, length, dia, Erest)
str path
float length, dia, Erest
float area = length*PI*dia
float xarea = PI*dia*dia/4

create compartment {path}
setfield {path} \

Em { Erest } \ // volts
Rm { RM/area } \ // Ohms
Cm { CM*area } \ // Farads
Ra { RA*length/xarea } // Ohms

end

Jak wiemy - definicję funkcji rozpoczynamy od słowa kluczowego function,
a kończymy słowem end. Argumenty podajemy w nawiasach. W prezen-
towanym przykładzie mamy ponadto do czynienia z zmiennymi typu łań-
cuchowego str i zmiennoprzecinkowymi float. Pamiętajmy też, że wszelkie
odniesienia do zmiennych, które nie przywędrowały do funkcji jako argu-
ment muszą być poprzedzone ujęciem identyfikatora zmiennej w nawiasy
klamrowe. Czytelnik proszony jest o zwrócenie uwagi na symbol \ służący
do przełamywania linii.

5.3. Wprowadzenie zegarów i jednostek SI 55

Dalsza część skryptu wygląda bardzo podobnie do pierwszego omawia-
nego przypadku. Po utworzeniu elementu neutralnego wywołujemy zadekla-
rowaną wcześniej funkcję:

create neutral /cell
makecompartment /cell/soma {soma_l} {soma_d} {Eleak}

i zapewniamy pubudzanie ciała komórki prądem z zewnątrz:

setfield /cell/soma inject 0.3e-9 // prad o nat. 0.3 nA

Zapewniamy zapis wyników na dysk do pliku soma2.vm, sprawdzamy po-
prawność, resetujemy aktywność:

create asc_file /soma_potential
useclock /soma_potential 0
setfield /soma_potential filename soma2.vm append 0
addmsg /cell/soma /soma_potential SAVE Vm

check
reset

i uruchamiamy symulację w taki sposób, by po zakończeniu powrócić do kon-
soli systemu Linux:

step 1 -time
quit

Parametr -time przy poleceniu step informuje GENESIS, że symuluje-
my – w tym przypadku – jedną sekundę biologicznej aktywności komór-
ki. Oznacza to, że przy zdefiniowanym wcześniej kroku symulacji wynoszą-
cym 0.00005 s system będzie musiał wykonać 20000 kroków. Zauważmy, że
przy zapewnianiu zapisu wyników na dysk poinformowaliśmy GENESIS, że
do czynności tej powinien używać zegara identyfikowanego przez liczbę 0.
Po zakończeniu symulacji możemy wykreślić nowopowstały plik. Skrypt

gnuplota wzbogacamy o jednostki SI w podpisach osi, pamiętamy też, że
zarówno plik z danymi jak i wyjściowy powinny mieć inne nazwy.

set xlabel "t [s]"
set ylabel "V_{m} [V]"

set output "wykres2.eps"
plot "soma2.vm" u 1:2 w l t "V_{m}"

Rys. 5.2 jest znormalizowany w stosunku do Rys. 5.1, ale wciąż jeszcze
nie obserwujemy pików potencjału czynnościowego jako że wciąż nie mamy
wprowadzonych do ciała komórki kanałów jonowych.

56 5. Modelowanie pojedynczej komórki nerwowej

-0.06

-0.055

-0.05

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

 0 0.2 0.4 0.6 0.8 1

V
m

 [
m

V
]

t [s]

Vm

Rysunek 5.2. Potencjał błony komórkowej bez kanałów jonowych, ale z uwzględ-
nieniem jednostek SI.

5.4. Wprowadzenie kanałów jonowych

Kanały jonowe wprowadza się ręcznie do ciała modelowanej komórki
w trochę zawiły sposób, jednak jak przekonamy się wkrótce cały proces
tworzenia komórek da się elegancko zautomatyzować. W celu wzbogacenia
ciała komórki o mechanizmy sodowo–potasowe na początku skryptu należy
załączyć bibliotekę funkcji hhchan:

include hhchan

Następnie, tuż przed definicją kroku symulacji powinniśmy zadeklarować
zmienną konieczną do poprawnego działania funkcji z załączonej wcześniej
biblioteki:

float SOMA_A = soma_l*PI*soma_d //pow. somy dla hhchan.g

Po stworzeniu elementu neutralnego i właściwego ciała komórki buduje-
my kanały jonowe wspomagając się poleceniami pushe i pope służącymi
do wchodzenia wgłąb i wychodzenia na zewnątrz aktualnego elementu. Same
kanały tworzone są przez funkcje z hhchan.

pushe /cell/soma
make_Na_squid_hh
make_K_squid_hh
pope

5.4. Wprowadzenie kanałów jonowych 57

Teraz już tylko musimy powiązać kanały jonowe z ciałem komórki przez
zapewnienie przesyłania odpowiednich wiadomości:

addmsg /cell/soma/Na_squid_hh /cell/soma CHANNEL Gk Ek
addmsg /cell/soma /cell/soma/Na_squid_hh VOLTAGE Vm
addmsg /cell/soma/K_squid_hh /cell/soma CHANNEL Gk Ek
addmsg /cell/soma /cell/soma/K_squid_hh VOLTAGE Vm

Treść całego skryptu zawierającego model ciała komórki wraz z zaim-
plementowanymi kanałami jonowymi wygląda następująco:

include hhchan

float PI = 3.14159

float RM = 0.33333
float CM = 0.01
float RA = 0.3
float EREST_ACT = -0.07
float Eleak = EREST_ACT + 0.0106
float ENA = 0.045
float EK = -0.082

float soma_l = 30e-6
float soma_d = 30e-6

float SOMA_A = soma_l*PI*soma_d

float dt = 0.00005
setclock 0 {dt}

function makecompartment(path, length, dia, Erest)
str path
float length, dia, Erest
float area = length*PI*dia
float xarea = PI*dia*dia/4

create compartment {path}
setfield {path} \

Em { Erest } \
Rm { RM/area } \
Cm { CM*area } \
Ra { RA*length/xarea }

58 5. Modelowanie pojedynczej komórki nerwowej

end

create neutral /cell
makecompartment /cell/soma {soma_l} {soma_d} {Eleak}
setfield /cell/soma inject 0.3e-9

pushe /cell/soma
make_Na_squid_hh
make_K_squid_hh
pope

addmsg /cell/soma/Na_squid_hh /cell/soma CHANNEL Gk Ek
addmsg /cell/soma /cell/soma/Na_squid_hh VOLTAGE Vm
addmsg /cell/soma/K_squid_hh /cell/soma CHANNEL Gk Ek
addmsg /cell/soma /cell/soma/K_squid_hh VOLTAGE Vm

create asc_file /soma_potential
useclock /soma_potential 0
setfield /soma_potential filename soma3.vm append 0
addmsg /cell/soma /soma_potential SAVE Vm

check
reset

step 1 -time
quit

Dla przejrzystości kodu pominięto wskazane i zawsze zalecane komentarze.
Rys. 5.3 przedstawia wykres zmieniającego się potencjału błony komór-

kowej w pierwszych 200 ms symulowanej aktywności biologicznej neuronu.
Wykres ten uzyskujemy przez dopisanie do skryptu gnuplota dwóch linijek:

set output "wykres3.eps"
plot [0:0.2] "soma3.vm" u 1:2 w l t "V_{m}"

i ponownym uruchomieniu generatora wykresów z nazwą pliku ze skryptem
jako parametrem.

5.5. Automatyzacja modelowania komórek

Budowę nawet bardzo złożonych komórek nerwowych da się zautomaty-
zować. W tym celu wykorzystujemy mechanizm wbudowany w GENESIS,
tak zwany Cell Reader.

5.5. Automatyzacja modelowania komórek 59

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0 0.05 0.1 0.15 0.2

V
m

 [
m

V
]

t [s]

Vm

Rysunek 5.3. Potencjał błony komórkowej z kanałami jonowymi i z uwzględnieniem
jednostek SI.

Definicje komórek umieszcza się w pliku o specjalnej strukturze i rozsze-
rzeniu .p. Rozważmy następujący plik:

// cell.p - Cell parameter file used in Tutorial #5

// Format of file :
// x,y,z,dia are in microns, all other units are SI (Meter K
// In polar mode ’r’ is in microns, theta and phi in degrees
// Control line options start with a ’*’
// The format for each compartment parameter line is :
//name parent r theta phi d ch dens
//in polar mode, and in cartesian mode :
//name parent x y z d ch dens
// For channels, "dens" = maximum conductance per unit area
// For spike elements, "dens" is the spike threshold
// Coordinate mode
*relative
*cartesian
*asymmetric

// Specifying constants
*set_compt_param RM 0.33333
*set_compt_param RA 0.3

60 5. Modelowanie pojedynczej komórki nerwowej

*set_compt_param CM 0.01
*set_compt_param EREST_ACT -0.07

// For the soma, use the leakage potential (-0.07 + 0.0106)
*set_compt_param ELEAK -0.0594
soma none 30 0 0 30 Na_squid_hh 1200 K_squid_hh 360 spike 0.

// The dendrite has no H-H channels, so ELEAK = EREST_ACT
*set_compt_param ELEAK -0.07
dend soma 100 0 0 2 Ex_channel 0.795775

W tym przypadku zachowaliśmy oryginalne i wiele mówiące komentarze na-
pisane przez twórców GENESIS. Z naszego punktu widzenia najważniejsze
są dwie linie rozpoczynające się od słów soma none i dend soma znajdują-
ce się pod koniec pliku. W ten sposób informujemy Cell Readera, że soma
nie posiada elementu nadrzędnego, natomiast dendryt dend wychodzi z so-
ma. Zwróćmy też uwagę na kanały wzbudzający Ex channel i hamujący
Inh channel zdefiniowane w obrębie dendrytu. W analogiczny sposób mo-
żemy konstruować komórki zawierające wiele wielokrotnie rozgałęziających
się dendrytów. Pozostałe linie pliku cell.p zawierają standardowe wartości
parametrów Hodgkina–Huxleya i przynajmniej na początku nie powinny
być zmieniane przez niedoświadczonych użytkowników.
Korzystanie z mechanizmu Cell Reader niesie najwięcej zalet wtedy,

gdy w modelu różne występują komórki. Wtedy każda komórka zdefiniowana
jest w osobnym pliku. Wczytanie komórki podczas symulacji dokonuje się
przez wykonanie polecenia readcell i wcześniejszym załączeniu biblioteki
protodefs:

include protodefs.g
readcell cell.p /cell

Uwaga: Bibliotekę protodefs.g musimy najpierw przekopiować do katalogu
z tworzonym modelem z katalogu genesis/Scripts/tutorials1. Cieszmy się
zatem, że nie musimy już za każdym razem wpisywać bloku ze zmiennymi
w układzie SI, definiować funkcji tworzącej elementy itp. Cały skrypt wy-
korzystujący Cell Reader przyjmuje następującą postać:

float dt = 0.00005
setclock 0 {dt}

1 Jeżeli instalowaliśmy GENESIS z gotowego pakietu deb, to biblioteka
protodefs.g może znajdować się w trudnym do znalezienia katalogu, gdzieś
w głębokich czeluściach systemu operacyjnego. Istnieje duża szansa, że uda
nam się ją przekopiować do katalogu bieżącego za pomocą polecenia: cp
/usr/share/genesis-2.3/Scripts/tutorials/protodefs.g . i gotowe.

5.6. Zapis czasu powstawania piku 61

include protodefs.g
readcell cell.p /cell

setfield /cell/soma inject 0.3e-9

create asc_file /soma_potential
useclock /soma_potential 0
setfield /soma_potential filename soma4.vm append 0
addmsg /cell/soma /soma_potential SAVE Vm

reset
check

step 1 -time
quit

Po wykonaniu skryptu w katalogu z modelem powstaje plik soma4.vm,
który możemy wykreślić.

5.6. Zapis czasu powstawania piku

W symulacji komórek nerwowych często nie zależy nam na dokładnym
odwzorowaniu przebiegu wartości potencjału błony, a jedynie na zarejestro-
waniu czasu występowania poszczególnych pików potencjału czynnościowe-
go. Podejście takie pozwala znacząco skrócić czas symulacji i oszczędza miej-
sce na dysku. GENESIS pozwala na zapis omawianej wielkości w stosunkowo
prosty sposób. Fragment skryptu:

create spikehistory /soma_spikes
setfield ^ filename soma4.spike append 0 ident_toggle 1
addmsg /cell/soma/spike /soma_spikes SPIKESAVE

tworzy historię pojawiania się pików w obiekcie soma spikes, który z kolei
kojarzy z plikiem (tu. soma4.spike) na dysku i przesyła wiadomość SPI-
KESAVE z elementu spike ciała komórki do rzeczonego obiektu z historią.
Plik soma4.spike ma postać:

/cell/soma/spike 0.348050
/cell/soma/spike 0.363750
/cell/soma/spike 0.379450
/cell/soma/spike 0.395150
/cell/soma/spike 0.410800
/cell/soma/spike 0.426500

62 5. Modelowanie pojedynczej komórki nerwowej

gdzie w prawej kolumnie zapisane są czasy występowania pików potencjału
czynnościowego.

5.7. Podsumowanie

Przedstawiono szczegółowo zasadę projektowania modelu ciała pojedyn-
czej komórki nerwowej. Opisano również mechanizm Cell Reader pozwala-
jący w łatwy spsoób konstruować komórki zawierające dendryty. załączono
treść najważniejszych skryptów oraz opisano metody wizualizacji zapisanych
na dysk wyników z wykorzystaniem programu gnuplot.

5.8. Zadania

Zadanie 1

Napisz skrypt zawierający ciało komórki z wbudowanymi kanałami jo-
nowymi sodowymi i potasowymi w standardzie jednostek SI. Unikaj stoso-
wania metody „kopiuj – wklej”.

Zadanie 2

Napisz skrypt, który tworzy dwie komórki zbudowane z ciała i dwóch
dendrytów każda z wykorzystaniem mechanizmu Cell Reader. Zapisz ak-
tywność obu komórek na dysk i wykreśl przebiegi wartości potencjału błony
w pierwszych 300 ms symulacji.

Zadanie 3

Wzbogać skrypt z Zadania 2 o zapis czasów pojawiania się pików po-
tencjału czynnościowego.

Rozdział 6

Modelowanie prostych sieci
neuronowych w GENESIS

6.1. Wprowadzenie . 64
6.2. Tworzenie synaps . 64
6.3. Generator losowych pobudzeń 65
6.4. Sieć zbudowana z dwóch komórek 67
6.5. Sieć dwuwymiarowa I 69
6.6. Sieć trójwymiarowa I 72
6.7. Alternatywny sposób tworzenia sieci 2D 74
6.8. Podsumowanie . 75
6.9. Zadania . 76

Zadanie 1 . 76
Zadanie 2 . 76
Zadanie 3 . 76
Zadanie 4 . 76

64 6. Modelowanie prostych sieci neuronowych w GENESIS

6.1. Wprowadzenie

W tym rozdziale zapoznamy się z metodologią tworzenia połączeń mię-
dzy komórkami. W pierwszej sekcji zdefiniujemy funkcję przydatną w two-
rzeniu synaps. Następnie poznamy generator losowych pobudzeń, który moż-
na będzie podłączać za pomocą synapsy do modelowanych komórek. Naj-
prostsza sieć neuronowa będzie zbudowana z dwóch elementów. Nauczy-
my się ponadto w sposób świadomy konstruować modele dwuwymiarowych
i trójwymiarowych sieci neuronowych oraz zapisywać i wizualizować ich ak-
tywność w środowisku gnuplot.

6.2. Tworzenie synaps

Idea synapsy została wbudowana bezpośrednio w symulator i podczas
implementacji połączeń w model nie musimy martwić się o szczegółowy
i skomplikowany numerycznie mechanizm Hodgkina–Huxleya, podobnie jak
nie musimy wprost kodować równań różniczkowych opisujących zachowanie
fragmentów poszczególnych komórek.
Każda synapsa użyta w GENESIS charakteryzuje się dwoma parametra-

mi: wagą i opóźnieniem synaptycznym wyrażanym w sekundach. Do stwo-
rzenia synapsy warto napisać funkcję make synapse:

function make_synapse(pre,post,weight,delay)
str pre,post
float weight,delay
int syn_num

addmsg {pre} {post} SPIKE
syn_num = {getfield {post} nsynapses} - 1
setfield {post} synapse[{syn_num}].weight {weight} \

synapse[{syn_num}].delay {delay}
echo {pre} "--->" {post} {weight} {delay}

end

W powyższym kodzie pre i post to argumenty, w których do funkcji przesy-
łane są elementy presynaptyczny i postsynaptyczny. Ponadto parametrami
funkcji są waga weight i opóźnienie delay. Zmienna syn num jest po-
mocnicza i służy do przechowywania liczby synaps dochodzących do danej
komórki w taki sposób, by tworzona nowa synapsa zajęła pierwsze, wolne
i dostępne miejsce w strukturze synaps modelowanego neuronu. Po utwo-
rzeniu synapsy na konsolę GENESIS wysyłamy komunikat informacyjny
o połączonych właśnie elementach presynaptycznym i postsynaptycznym.

6.3. Generator losowych pobudzeń 65

6.3. Generator losowych pobudzeń

We wszelkiego rodzaju modelach dobrze jest zapewnić zmieniające się
w czasie pobudzenie wybranej komórki bądź grupy komórek. W tym ce-
lu generujemy losowo zmieniające się w czasie ciągi pobudzeń symulujące
piki potencjałów czynnościowych wirtualnych komórek (ang. random spike
trains) za pomocą obiektu randomspike. Deklaracja losowego ciągu tego
typu impulsów może wyglądać następująco:

create randomspike /input
setfield ^ min_amp 1 max_amp 1 rate 200 reset 1 reset_value 0

Poszczególne pola generatora oznaczają:
— min amp – minimalną amplitudę zdarzenia,
— max amp – maksymalną amplitudę zdarzenia,
— rate – średnią częstość generatora wyrażoną w Hz,
— reset – flagę włączającą bądź wyłączającą resetowanie generatora po każ-
dym zdarzeniu,

— reset value – wartość do jakiej resetować,
— state – aktualny stan obiektu,
— abs refract – minimalny czas między zdarzeniami.
Pokazuje to, że w przypadku stworzonego przed chwilą generatora o nazwie
input użyliśmy tylko kilku z nich.
Warto też zwrócić uwagę na symbol daszka oznaczający w języku skryp-

towym GENESIS odwołanie do poprzednio zdefiniowanego obiektu.
Załóżmy, że w pewnym modelu tworzymy przy pomocy mechanizmu

Cell Reader komórkę cell składającą się z ciała i jednego dendrytu na-
zwanego dend. Podłączenie generatora impulsów input do kanału wzbu-
dzającego dendrytu komórki cell przyjmuje następującą postać:

make_synapse /input /cell/dend/Ex_channel 2 0

Zauważmy, że opóźnienie synaptyczne między generatorem a komórką
wynosi 0 przy wadze połączenia standardowo w takich sytuacjach usta-
wionej na 2. Waga informuje nas w pewnym sensie o stopniu wzmocnie-
nia sygnału wysyłanego przez generator bądź inną komórkę. W zależności
od parametrów komórki postsynaptycznej – wagi o konkretnej wartości mo-
gą doprowadzić do jej wzbudzenia, inne zaś nie wzmacniają sygnału komórki
presynaptycznej do takiego stopnia, który wywołałby wyładowanie. Cały zaś
skrypt (przy założeniu, że korzystamy z pliku cell.p, w którym definiujemy
odpowiednią komórkę) przedstawia się następująco:

float dt = 0.00005
setclock 0 {dt}

66 6. Modelowanie prostych sieci neuronowych w GENESIS

include functions.g // nasze zdefiniowane funkcje
include protodefs.g

readcell cell.p /cell // plik z definicja komorki

randseed // generator liczb pseudolosowych

create randomspike /input
setfield ^ min_amp 1 max_amp 1 rate 200 reset 1 \

reset_value 0

make_synapse /input /cell/dend/Ex_channel 2 0

create asc_file /soma_potential
useclock /soma_potential 0
setfield /soma_potential filename soma5.vm append 0
addmsg /cell/soma /soma_potential SAVE Vm

create spikehistory /soma_spikes
setfield ^ filename soma.spike append 0 ident_toggle 1
addmsg /cell/soma/spike /soma_spikes SPIKESAVE

reset
check

step 1 -time
quit

Należy zauważyć, że w trzeciej linii korzystamy ze znanego już polecenia inc-
lude za pomocą którego dołączamy do skryptu plik functions.g, w którym
będą znajdować się definicje wykorzystywanych przez nas funkcji. W oma-
wianym przypadku w pliku tym powinna być już obecna definicja funkcji
tworzenia synapsy. Czytelnicy niebawem zauważą, że warto posiadać swój
osobisty plik functions.g, który będzie rozrastał się i wzbogacał o nowe
funkcje wraz z osobistym zaawansowaniem w GENESIS.
Ponadto użyte zostało polecenie randseed inicjujące generator liczb

pseudolosowych, konieczne do odmiennego za każdym razem działania ge-
neratora input.
Po wykonaniu skryptu powstaną pliki soma.vm z przebiegiem poten-

cjału na ciele komórki oraz soma.spike z zanotowanym czasem wystąpienia
pików potencjału czynnościowego w komórce cell.

6.4. Sieć zbudowana z dwóch komórek 67

Przebieg potencjału na modelowanej w ten sposób komórce przedstawio-
no na Rys. 6.1

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0 0.2 0.4 0.6 0.8 1

V
m

 [
V

]

t [s]

Vm

Rysunek 6.1. Potencjał błony komórkowej neuronu podłączonego do generatora
typu randomspike

6.4. Sieć zbudowana z dwóch komórek

Na obecnym poziomie zaawansowania możemy pokusić się o stworzenie
najprostszej sieci neuronów Hodgkina–Huxleya zawierającej dwie połączone
komórki i generator. Niech będzie dana komórka A z jednym dendrytem
podłączona do generatora losowych impulsów oraz taka sama komórka B
podłączona do komórki A.
Za pomocą znanych nam metod powinniśmy stworzyć dwie komórki ko-

rzystając z Cell Readera oraz generator. Następnie łączymy stworzony
generator z kanałem wzbudzającym dendrytu komórki A z wagą w = 0
i opóźnieniem d = 0. Podłączając komórkę B do A wiążemy synapsą kanał
wzbudzający jej jedynego dendrytu z polem spike ciała neuronu presy-
naptycznego z wagą w = 2.8 i opóźnieniem d = 0.0004 s. Należy jeszcze
tylko zapewnić zapis aktywności obu komórek do plików soma A.vm, so-
ma B.vm, soma A.spike i soma B.spike, sprawdzić wewnętrzną spój-
ność modelu check, zresetować sieć reset i uruchomić symulację jednej se-
kundy aktywności biologicznej takiego układu step 1 -time. Gotowy skrypt
powinien wyglądać następująco:

float dt = 0.00005 // simulation time step in sec

68 6. Modelowanie prostych sieci neuronowych w GENESIS

setclock 0 {dt} // set the simulation clock

include functions.g
include protodefs.g

readcell cell.p /cell_A
readcell cell.p /cell_B

randseed

create randomspike /input
setfield ^ min_amp 1 max_amp 1 rate 200 reset 1 \

reset_value 0

make_synapse /input /cell_A/dend/Ex_channel 2 0
make_synapse /cell_A/soma/spike \

/cell_B/dend/Ex_channel 2.8 1e-04

create asc_file /soma_A_potential
useclock /soma_A_potential 0
setfield /soma_A_potential filename soma_A.vm append 0
addmsg /cell_A/soma /soma_A_potential SAVE Vm

create asc_file /soma_B_potential
useclock /soma_B_potential 0
setfield /soma_B_potential filename soma_B.vm append 0
addmsg /cell_B/soma /soma_B_potential SAVE Vm

create spikehistory /soma_A_spikes
setfield ^ filename soma_A.spike append 0 ident_toggle 1
addmsg /cell_A/soma/spike /soma_A_spikes SPIKESAVE

create spikehistory /soma_B_spikes
setfield ^ filename soma_B.spike append 0 ident_toggle 1
addmsg /cell_B/soma/spike /soma_B_spikes SPIKESAVE

reset
check

step 1 -time
quit

6.5. Sieć dwuwymiarowa I 69

Przebieg wartości potencjału na obu modelowanych komórkach przedsta-
wiono na Rys. 6.2. Wykres wygenerowano wydając polecenie:

plot [0:0.25] "soma_A.vm" u 1:2 w l t "Cell A V_{m}", \
"soma_B.vm" u 1:2 w l t "Cell B V_{m}"

w programie gnuplot.Warto zwrócić uwagę na związane z opóźnieniem
synaptycznym przesunięcie pików potencjału czynnościowego komórki B
względem przebiegu komórki A.

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0 0.05 0.1 0.15 0.2 0.25

V
m

 [
V

]

t [s]

Cell A Vm
Cell B Vm

Rysunek 6.2. Potencjał błon komórkowych neuronów cell A i cell B w pierwszych
250 ms symulacji

6.5. Sieć dwuwymiarowa I

Potrafimy zbudować już sieć z dwóch neuronów. W tym miejscu warto
zastanowić się jak budować sieci zawierające wiele takich samych komórek
i połączonych według określonej reguły. Z punktu widzenia zagadnień rów-
noleglizacji modeli warto budować dwuwymiarowe struktury na prostokąt-
nych siatkach. Zakładamy, że neurony w siatce będą indeksowane liczbami
całkowitymi. W tym celu gdzieś na początku modelu warto zadeklarować
globalne zmienne array minx oraz array miny określające początkowe
indeksy komórek w wierszach i kolumnach. Przez analogię określamy też
zmienne sep x i sep y, które determinują odległość poszczególnych komó-
rek wzdłuż obu osi.

70 6. Modelowanie prostych sieci neuronowych w GENESIS

Ponieważ często będziemy tworzyć sieci dwuwymiarowe – warto do bi-
blioteki naszych własnych funkcji dopisać funkcję make circuit 2d. Nowa
funkcja jako argumenty przyjmuje prototyp komórki do kopiowania, pierw-
szy człon nazwy tworzonej sieci oraz jej wymiary.

function make_circuit_2d(protocell, net, nx, ny)
str protocell
int i,j

for (i=1; i<={nx};i={i+1})
for (j=1; j<={ny};j={j+1})

copy {protocell} {net}_{i}_{j}

position {net}_{i}_{j} { {array_minx} + ({sep_x} * {i}) } \
{ {array_miny} + ({sep_y} * {j}) } \
{ 0 }

end
end

end

W funkcji tej korzystamy z podwójnej, zagnieżdżonej pętli for oraz funkcji
copy i position odpowiednio tworzących i ustawiających kolejne komórki
na siatce w węzłach indeksowanych przez i oraz j.
Zapis aktywności sieci wykonujemy korzystając ze zdobytej dotychczas

wiedzy i tworzymy funkcję, która automatyzuje cały proces:

function make_circuit_2d_output(net, nx, ny, filename)
int i,j

create spikehistory {net}-history
setfield ^ filename {filename}.spike append 0 ident_toggle 1

for (i=1; i<={nx}; i={i+1})
for (j=1; j<={ny}; j={j+1})

addmsg {net}_{i}_{j}/soma/spike {net}-history SPIKESAVE

end
end

echo {net} spike activity saved to file {filename}.spike

6.5. Sieć dwuwymiarowa I 71

end

Zauważmy, że jako argument funkcji - oprócz pierwszego członu nazwy sieci,
z której zbieramy aktywność i jej wymiarów podajemy nazwę pliku filena-
me, do której w ciele funkcji dołączone zostanie jeszcze rozszerzenie spike.
Po wykonaniu symulacji w plikach o tym rozszerzeniu będzie zapisana ak-
tywność poszczególnych komórek sieci.
Przykładowy fragment kodu wykorzystujący obie funkcje i konieczne

deklaracje może wyglądać następująco:

include protodefs.g
int array_minx = 1
int array_miny = 1

float sep_x = 40e-6
float sep_y = 40e-6

include functions.g

readcell cell.p /cell
make_circuit_2d /cell /net2d 16 16
make_circuit_2d_output /net2d 16 16 rec-net2d

Fragment kodu, który powinien zrealizować 10% tzw. połączenia pełnego
(ang. full connection) może wyglądać następująco:

randseed
float probability = 0.1
int i1, j1, i2, j2

for (i1=1; i1<=16; i1={i1+1})
for (j1=1; j1<=16; j1={j1+1})
for (i2=1; i2<=16; i2={i2+1})
for (j2=1; j2<=16; j2={j2+1})

if ({rand 0 1} < {probability})
make_synapse /net2d_{i1}_{j1}/soma/spike \

/net2d_{i2}_{j2}/dend/Ex_channel 2.8 1e-04
end

end
end
end
end

72 6. Modelowanie prostych sieci neuronowych w GENESIS

Mamy tu aż cztery zagnieżdżone pętle, bo po każdej komórce algorytm musi
przecież przejść dwa razy – traktując ją jako presynaptyczną i postsynap-
tyczną. Synapsy tworzymy korzystając ze zdefiniowanej wcześniej funkcji.
Oprócz tego deklarujemy zmienną określającą prawdopodobieństwo, a loso-
wania dokonujemy przy pomocy funkcji randseed z określonym przedzia-
łem jako parametrem, pamiętając o wcześniejszej inicjacji generatora liczb
pseudolosowych randseed (Uwaga: wystarczy to uczynić tylko raz w pro-
gramie). Zakładając, że komórki wykorzystywane do tworzenia opisywanych
tu sieci zostały zaprojektowane i sparametryzowane tak jak w niniejszym
podręczniku - optymalna waga dla połączeń między nimi wynosi w=2.8,
a opóźnienie d=0.0001 s. Pamiętajmy też, że żeby uzyskać jakikolwiek za-
pis aktywności sieci – powinniśmy zapewnić stymulację wybranego neuronu
lub neuronów z zewnętrznego źródła, na przykład z generatora losowych
impulsów.

create randomspike /input
setfield ^ min_amp 1 max_amp 1 rate 200 reset 1 \
reset_value 0

make_synapse /input /net2d_8_8/dend/Ex_channel 2 0

6.6. Sieć trójwymiarowa I

W analogiczny sposób budujemy sieci trójwymiarowe. Sieci takie two-
rzymy na siatce prostopadłościanu (mimo to często nazywane są kolumnami
neuronalnymi). Przyjemność z analizy treści funkcji make circuit 3d po-
zostawiamy czytelnikowi.

function make_circuit_3d(protocell, net, nx, ny, nz)
str protocell
int i,j,k

for (i=1; i<={nx};i={i+1})
for (j=1; j<={ny};j={j+1})
for (k=1; k<={nz};k={k+1})

copy {protocell} {net}_{i}_{j}_{k}

position {net}_{i}_{j}_{k} \
{ {array_minx} + ({sep_x} * {i}) } \
{ {array_miny} + ({sep_y} * {j}) } \
{ {array_minz} + ({sep_z} * {k}) }

6.6. Sieć trójwymiarowa I 73

end
end
end
end

Podobnie do przypadku 2D zapewniamy zapis aktywności trójwymiarowej
sieci do pliku:

function make_circuit_3d_output(net, nx, ny, nz, filename)
int i,j,k

create spikehistory {net}-history
setfield ^ filename {filename}.spike append 0 ident_toggle 1

for (i=1; i<={nx}; i={i+1})
for (j=1; j<={ny}; j={j+1})
for (k=1; k<={nz};k={k+1})

addmsg {net}_{i}_{j}_{k}/soma/spike \
{net}-history SPIKESAVE

end
end

end

echo {net} spike activity saved to file {filename}.spike
end
%

Przykładowy fragment kodu wykorzystujący obie funkcje i konieczne
deklaracje może wyglądać następująco:

include protodefs.g
int array_minx = 1
int array_miny = 1
int array_minz = 1

float sep_x = 40e-6
float sep_y = 40e-6
float sep_z = 40e-6

include functions.g
readcell cell.p /cell
make_circuit_3d /cell /net3d 2 3 4

74 6. Modelowanie prostych sieci neuronowych w GENESIS

make_circuit_3d_output /net3d 2 3 4 rec-net3d

Łączenie zaś komórek w obrębie kolumny z określonym prawdopodobień-
stwem wymaga zagnieżdżenia sześciu pętli:

randseed
float probability = 0.1
int i1, i2, j1, j2, k1, k2

for (i1=1; i1<=2; i1={i1+1})
for (j1=1; j1<=3; j1={j1+1})
for (k1=1; k1<=4; k1={k1+1})
for (i2=1; i2<=2; i2={i2+1})
for (j2=1; j2<=3; j2={j2+1})
for (k2=1; k2<=4; k2={k2+1})

if ({rand 0 1} < {probability})

make_synapse /net3d_{i1}_{j1}_{k1}/soma/spike \
/net3d_{i2}_{j2}_{k2}/dend/Ex_channel 2.8 1e-04

end
end
end
end
end
end
end

Czytelnik zechce zauważyć, że wagi połączeń między konkretnymi komórka-
mi nie muszą być zawsze stałe. Stosunkowo łatwo uzależnić je na przykład
od odległości euklidesowej lub innych, własnoręcznie zdefiniowanych para-
metrów modelu. Oczywiście musimy pamiętać, że w celu obserwacji niezero-
wej aktywności sieci – musimy zapewnić stymulację wybranego neuronu lub
grupy neuronów z zewnętrznego źródła, na przykład z generatora losowych
impulsów.

6.7. Alternatywny sposób tworzenia sieci 2D

Warto wiedzieć, że GENESIS oferuje możliwość konstruowania dwuwy-
miarowych sieci neuronowych przy pomocy funkcji createmap. Przykłado-
we wywołanie tej funkcji ma postać:

6.8. Podsumowanie 75

createmap /cell /net2d 20 5 -delta {sep_x} {sep_y}

gdzie utworzono sto komórek na siatce o wymiarach 20 × 5 i oddalonych
o predefiniowane przez nas wcześniej odległości. Niestety z punktu widze-
nia struktury danych w modelu – komórki te przechowywane są w tablicy
indeksowanej od 0 do 99.
Zapis aktywności utworzonej w ten sposób sieci zapewniamy wykorzy-

stując napisaną specjalną funkcję:

function make_output_2d(net, filename)
str net, filename

create spikehistory {net}-spikes
setfield ^ filename {filename} append 0 ident_toggle 1
addmsg {net}[]/soma/spike {net}-spikes SPIKESAVE
end

gdzie warto zwrócić uwagę na puste w środku nawiasy kwadratowy [] słu-
żące do odwoływania się do sieci jako całości. Wywołanie funkcji z poziomu
głównego skryptu modelu ma postać:

make_output_2d /net2d/cell net2d.spike

Połączenia w sieci zapewniamy przez wywołanie funkcjimake synapse,
na przykład łączymy drugą komórkę z siódmą wykonując polecenie:

make_synapse /net2d/cell[2]/soma/spike \
/net2d/cell[7]/dend/Ex_channel \
{weight} {delay}

lub w dowolny inny zautomatyzowany sposób.
GENESIS zapewnia również interesujące metody nadawania struktury

wag i opóźnień dla sieci jako całości tworzonych przy pomocy finkcji create-
map. Polecenia planarweight i planardelay zostały szczegółowo opisane
w osiemnastym rozdziale [19].

6.8. Podsumowanie

W tym rozdziale przedstawiono metody tworzenia sieci neuronowych.
Po zapoznaniu się z tym rozdziałem czytelnik powinien potrafić zbudować
zarówno proste sieci zawierające kilka komórek jak również skomplikowane
dwu– i trójwymiarowe struktury. Przedstawiono treść kilku pożytecznych
funkcji: do tworzenia synaps, obwodów dwuwymiarowych, trójwymiarowych
i zapisywania aktywności. Potrafimy też tworzyć generatory losowych impul-
sów i wizualizować aktywność wybranych komórek przy pomocy programu
gnuplot.

76 6. Modelowanie prostych sieci neuronowych w GENESIS

6.9. Zadania

Zadanie 1

Stwórz model, który zawiera trzy komórki: A, B i C. Komórka A jest
podłączona do generatora, komórka B pobiera pobudzenia od komórki A,
a komórka C od komórki B. Napisz skrypty, które przygotują zapis aktyw-
ności poszczególnych komórek w odrębnych plikach .spike oraz przebiegi
potencjałów w plikach .vm.

Zadanie 2

Napisz model zawierający tablicę 100 komórek ułożonych na kwadrato-
wej siatce 10×10. Zrealizuj 15% połączenia pełnego. Zapisz aktywność sieci
do pliku .spike.

Zadanie 3

Napisz model zawierający tablicę 100 komórek ułożonych na kwadrato-
wej siatce 10× 10 korzystając z funkcji createmap. Zrealizuj 25% połącze-
nia pełnego. Zapisz aktywność sieci do pliku .spike. Do realizacji połączeń
możesz wykorzystać dowolną metodę: przedstawioną w tym rozdziale lub
planarweight i planardelay. Podłącz trzy wybrane komórki do generato-
ra.

Zadanie 4

Napisz model zawierający tablicę 512 komórek ułożonych na trójwymia-
rowej siatce 8 × 8 × 8. Uwaga w symulowanej sieci zaaranżuj 80% połą-
czeń wzbudzających (do dend/Ex channel) i 20% hamujących (do den-
d/Inh channel). Zapisz aktywność sieci do pliku .spike. Podłącz pięć wy-
branych komórek do generatora.

Rozdział 7

Wizualizacja aktywności sieci

7.1. Wprowadzenie . 78
7.2. Przykładowa sieć . 78
7.3. Wizualizacja . 81
7.4. Podsumowanie . 82
7.5. Zadania . 82

Zadanie 1 . 82
Zadanie 2 . 82
Zadanie 3 . 82

78 7. Wizualizacja aktywności sieci

7.1. Wprowadzenie

W tym rozdziale nauczymy się wizualizować aktywność symulowanych
sieci neuronowych za pomocą wbudowanych w GENESIS gotowych narzę-
dzi. O ile wizualizacja na przykład zmian potencjału wybranej komórki może
być z łatwością przeprowadzona w środowisku gnuplot, a wykorzystywane
przez GENESIS obiekty XODUS wydają się być przestarzałe, o tyle wizuali-
zacja w postaci mapy dwuwymiarowej dynamiki neuronalnej sieci zawiera-
jącej kilkadziesiąt neuronów w symulatorze GENESIS wygląda dostatecznie
ładnie i czasami nie warto tracić czasu na tworzenie nowej aplikacji li tylko
do pokazania migoczących kwadratów.

7.2. Przykładowa sieć

Zanim pokażemy jak wizualizować aktywność komórek stworzymy prosty
model zawierający dwie sieci net1 i net2, w każdej po 64 neurony rozmiesz-
czone na siatce o wymiarach 8× 8. W obrębie każdej sieci, a także między
nimi prawdopodobieństwo utworzenia synapsy ustalono na 10%. Sieci two-
rzymy korzystając z poznanego wcześniej polecenia createmap rozmiesz-
czając komórki na mapach w odległościach sep x o sep y. Aktywność sieci
zapisujemy do plików z rozszerzeniem .spike – funkcjamake mapoutput.
Do ustawienia losowych połączeń w obrębie każdej sieci wykorzystujemy
funkcję connect map, do połączenia pierwszej sieci z drugą korzysta się
z funkcji connect two maps. Stymulujemy zerową komórkę pierwszej sie-
ci z generatora losowych impulsów. Symulujemy jedną sekundę aktywno-
ści biologicznej systemu. Opisany tu model tworzony jest w następującym
skrypcie:

float sep_x=0.001 // odl. komorek w kierunku x w [m]
float sep_y=0.001 // odl. komorek w kierunku y w [m]

float genrate=200

setclock 0 0.000005
setclock 1 {1.0/{genrate}} // for generator

include functions-wizualizacja.g
include protodefs.g

readcell cell.p /cell

createmap /cell /net1 8 8 -delta {sep_x} {sep_y}

7.2. Przykładowa sieć 79

createmap /cell /net2 8 8 -delta {sep_x} {sep_y}

create randomspike /input
setfield ^ min_amp 1 max_amp 1 rate {genrate} reset 1 \

reset_value 0 abs_refract 0
useclock /input 1

create spikehistory /input-spikes
setfield ^ filename input.spike append 0 ident_toggle 1
addmsg /input /input-spikes SPIKESAVE

connect_map /net1 8 8 0.1
connect_map /net2 8 8 0.1
connect_two_maps /net1 /net2 8 8 0.1

make_synapse /input /net1/cell[0]/dend/Ex_channel 10 0 0

make_mapoutput /net1/cell net1.spike
make_mapoutput /net2/cell net2.spike

check
reset

step 1 -time

gdzie wszystkie funkcje zawarte w pliku functions wizualizacja.g przyj-
mują następującą postać:

function make_synapse(pre,post,weight,delay)
str pre,post
float weight,delay
int syn_num

addmsg {pre} {post} SPIKE
syn_num = {getfield {post} nsynapses} - 1
setfield {post} synapse[{syn_num}].weight {weight} \

synapse[{syn_num}].delay {delay}
echo {pre} "--->" {post} {weight} {delay}

end

function make_mapoutput(net, filename)
str net, filename

80 7. Wizualizacja aktywności sieci

create spikehistory {net}-spikes
setfield ^ filename {filename} append 0 ident_toggle 1
addmsg {net}[]/soma/spike {net}-spikes SPIKESAVE

end

function connect_map (net, nx, ny, prob)
int i,j, netdim

netdim = {nx} * {ny}

for (i=0;i<netdim;i=i+1)
for (j=0;j<netdim;j=j+1)

if ({rand 0 1} < {prob})
make_synapse {net}/cell[{i}]/soma/spike \

{net}/cell[{j}]/dend/Ex_channel 1.8 1e-04
end

end
end

end

function connect_two_maps (net1, net2, nx, ny, prob)
int i,j, netdim

netdim = {nx} * {ny}

for (i=1;i<netdim;i=i+1)
for (j=1;j<netdim;j=j+1)

if ({rand 0 1} < {prob})
make_synapse {net1}/cell[{i}]/soma/spike \

{net2}/cell[{j}]/dend/Ex_channel 1.8 1e-04
end

end
end

end

Po uruchomieniu opisywanego skryptu na dysku powstaną dwa pliki

7.3. Wizualizacja 81

net1.spike i net2.spike, w których zapisana zostanie aktywność obu sieci.
Na razie bez śladu wizualizacji.

7.3. Wizualizacja

Korzystając z przykładów zamieszczonych w kodzie GENESIS do pliku
z funkcjami trzeba teraz dopisać funkcję odpowiedzialną za wizualizację
aktywność sieci:

function make_netview (network, Nx, Ny, name, x, y, w, h)
// sets up xview widget to display Vm of each cell

int x,y,w,h

create xform /{name}-netview [{x},{y},{w},{h}]
create xdraw /{name}-netview/draw [0%,0%,100%, 100%]

// Make the display region a bit larger than the cell array
setfield /{name}-netview/draw \

xmin {-sep_x} xmax {Nx*sep_x} \
ymin {-sep_y} ymax {Ny*sep_y}
create xview /{name}-netview/draw/view
setfield /{name}-netview/draw/view path \

{network}/soma field Vm \
value_min -0.08 value_max 0.03 \

viewmode colorview sizescale {0.9*sep_x}
xshow /{name}-netview

end

a w kodzie zawierającym model jako taki trzeba ją po prostu wywołać:

make_netview /net1/cell[] 8 8 "net1-activity" 50 50 300 300
make_netview /net2/cell[] 8 8 "net2-activity" 350 50 300 300

określając jako parametry rozmiary sieci, tytuł okienka oraz współrzędne le-
wych górnych rogów wyświetlanych okienek wraz z ich rozmiarami w pionie
i w poziomie.
Teraz wywołanie skryptu spowoduje pojawienie się na ekranie okienek

wizualizujących aktywność z migoczącymi kwadracikami odpowiadającymi
każdemu z symulowanych neuronów Rys. 7.1.

82 7. Wizualizacja aktywności sieci

Rysunek 7.1. Wizualizacja aktywności sieci w XODUS.

7.4. Podsumowanie

Przedstawiono prostą metodę wizualizacji aktywności sieci neuronów
modelowanych w GENESIS skompilowanym z bibliotekami graficznymi XO-
DUS. często taka wizualizacja wystarcza, żeby prześledzić podstawowe za-
chowania występujące w badanym modelu. W bardziej skomplikowanych
przypadkach zaleca się tworzenie własnej, odrębnej aplikacji z danymi wej-
ściowymi w postaci plików .spike i wizualizującej aktywność sieci w pożą-
dany sposób.

7.5. Zadania

Zadanie 1

Stwórz model zawierający trzy kwadratowe sieci net1, net2 oraz net3
o wymiarach 10×10 połączone wewnątrz i między sobą z pewnym, zdefinio-
wanym przez ciebie prawdopodobieństwem. Wizualizuj aktywność modelu.

Zadanie 2

Zmodyfikuj funkcje z poprzedniego zadania w taki sposób, żeby tworzone
i wizualizowane sieci mogły być prostokątne. Stwórz wizualizację aktywności
sieci 8× 5.

Zadanie 3

Napisz aplikację zewnętrzną służącą do wizualizacji aktywności sieci
na podstawie plików .spike.

Rozdział 8

Instalacja i konfiguracja PGENESIS

8.1. Wprowadzenie . 84
8.2. Instalacja zależności . 84
8.3. Instalacja MPICH2 . 84
8.4. Edycja Makefile . 86
8.5. Kompilacja i instalacja 90
8.6. Czynności poinstalacyjne 91
8.7. Testowanie instalacji 91
8.8. Podsumowanie . 92
8.9. Zadania . 92

Zadanie 1 . 92
Zadanie 2 . 92
Zadanie 3 . 92

84 8. Instalacja i konfiguracja PGENESIS

8.1. Wprowadzenie

Prawdziwą potęgę GENESIS pokazuje w wersji równoległej. Dysponując
klastrami obliczeniowymi można projektować modele zawierające dziesiątki,
a nawet setki tysięcy neuronów z liczbą synaps rzędu miliona. Ograniczeniem
jest oczywiście zdolność obliczeniowa maszyny, na której symulacja zostanie
uruchomiona. Niemniej jednak już wykorzystanie dwurdzeniowych proce-
sorów pozwala w sposób istotny zmniejszyć czas wykonywanych obliczeń
numerycznych, czyli szybciej rozwiązać duży układ równań różniczkowych
Hodgkina–Huxleya. W tym rozdziale nauczymy się kompilować ze źródeł
równoległą odmianę GENESIS zwaną PGENESIS oraz przygotować kom-
puter wielordzeniowy do prowadzenia symulacji równoległych.

8.2. Instalacja zależności

Zanim rozpoczniemy instalacje PGENESIS i konfigurację maszyny rów-
noległej powinniśmy doinstalować do systemu kilka programów (kompilator
g++ i powłokę csh) oraz bibliotek graficznych wraz z ich narzędziami dewe-
loperskimi. Instalacja powyższych jest warunkiem koniecznym do poprawnej
kompilacji środowiska w systemie operacyjnym Ubuntu 10.04 i wyższych.
W konsoli systemu wykonujemy polecenie:

sudo apt-get install csh g++ libxt-dev libxt6 libxtst6 \
libxtst-dev libxmu-dev

8.3. Instalacja MPICH2

Komputer równoległy zbudujemy w oparciu o ogólnodostępną, darmową
i przenośną implementację standardu MPI dla systemu Linux. W tym celu
skorzystamy z biblioteki MPICH2 [26]. Instalacja MPICH2 w Ubuntu jest
niezwykle prosta. Wystarczy wykonać polecenie:

sudo apt-get install mpich2

Nie zawsze jednak to co najprostsze jest najlepsze. Autor z własnego do-
świadczenia może potwierdzić, że najlepszym rozwiązaniem będzie kompila-
cja najnowszej wersji biblioteki wprost ze źródeł. Pozwoli to uniknąć często
nieprzewidzianych i niepożądanych kłopotów. Problemy mogą wynikać bez-
pośrednio z uszkodzonych zależności między pakietami, niewiedzy lub nie-
dostosowania predefiniowanej konfiguracji do potrzeb indywidualnych użyt-
kowników, w tym wypadku programistów PGENESIS.
Źródła biblioteki można pobrać z [26] lub wykonując bezpośrdenio z kon-

soli polecenie (długi adres www oczywiście wpisujemy w jednej linii):

8.3. Instalacja MPICH2 85

wget http://www.mcs.anl.gov/research/projects/mpich2/
downloads/tarballs/1.4.1p1/mpich2-1.4.1p1.tar.gz

Po zapisaniu pliku na dysk proponujemy przeniesienie go do katalogu do-
mowego użytkownika oraz rozpakowanie:

mv mpich2-1.4.1p1.tar.gz ~
cd
tar xvfz mpich2-1.4.1p1.tar.gz

W dalszej kolejności utworzymy katalog, w którym będzie rezydować insta-
lacja MPICH2.

mkdir mpich2-install

Następnie należy wejść do katalogu zawierającego źródła biblioteki i rozpo-
cząć proces konfiguracji:

./configure --prefix=/home/student/mpich2-install \
--disable-f77 --disable-fc

Wykonując polecenie ./configure informujemy konfigurator o położeniu
katalogu, w którym znajdzie się skompilowana biblioteka oraz prosimy go
by nie brał pod uwagę aspektów związanych z kompilatorem języka FOR-
TRAN. Póki co nie będzie nam on w PGENESIS potrzebny.
Po udanej konfiguracji powinniśmy otrzymać na ekranie konsoli komu-

nikat:

Configuration completed.

Bibliotekę MPICH2 należy teraz skompilować wydając polecenie:

make

i zainstalować:

make install

Otrzymujemy odpowiednio komunikaty:

Make completed

oraz

Installed MPE2 in /home/student/mpich2-install

Proces instalacji MPICH2 kończymy przez dopisanie w sekcji pliku .ba-
shrc (rozpoczynającej się od export PATH=) definiującej ścieżkę dostępu
następującej frazy:

:/home/student/mpich2-install/bin

bezpośrednio za ostatnim katalogiem zdefiniowanym w ścieżce.

86 8. Instalacja i konfiguracja PGENESIS

8.4. Edycja Makefile

Proces instalacji PGENESIS rozpoczynamy od pobrania wersji równo-
ległej środowiska bezpośrednio ze strony twórców [27]. Obecnie najnowsza
wersja PGENESIS oznaczona jest numerem 2.3. Powinniśmy więc pobrać
plik o nazwie pgenesis-2.3-src.tar.gz (większość użytkowników pewnie już
pobrała ten plik wcześniej). Plik ten należy przenieść do katalogu głównego
i rozpakować:

mv pgenesis-2.3-src.tar.gz ~
tar xvfz pgenesis-2.3-src.tar.gz

Jeżeli instalacja i konfiguracja GENESIS w wersji standardowej przebie-
gła pomyślnie (a autor nawet nie dopuszcza myśli, że mogło tak nie być)
to powinniśmy otrzymac katalog pgenesis w katalogu genesis-2.3 obok
katalogu genesis ze standardową wersją.
Wchodzimy do katalogu z źródłami wersji równoległej:

cd genesis-2.3/pgenesis

i kopiujemy plik Makefile.dist do Makefile:

cp Makefile.dist Makefile

Następnie należy dokonać edycji plikuMakefile w taki sposób, by przy-
stosować go do używanego systemu operacyjnego.
Edycję rozpoczynamy od usunięcia komentarzy z linii 147 i 148 pliku

Makefile. Musimy poinformować kompilator, że skorzystamy z biblioteki
MPICH2. Po usunięciu komentarzy linie wyglądają tak:

USE_MPI = 1
MPI_LIB =

Linie od 159 do 164 również powinny zostać odkomentowane:

MPI_CMD = ’mpirun -np $$num_nodes $$exec $$nargv’
MPI_DEBUG_CMD = ’mpirun -gdb -np $$num_nodes $$exec $$nargv
these last three are needed even with MPI to keep the sc
PVM_ROOT = $(PWD)
PVM_ARCH = $(MACHINE)
SET_PVM_ARCH = $(PVM_ARCH)

W dalszej kolejności należy odszukać sekcję konfiguracyjną Linuksa i usu-
nąć odpowiednie komentarze w taki sposób, by fragment pliku Makefile
wyglądał tak (wersja 32 bitowa systemu):

~
System: Linux 1.2.x and up on Intel x86-based, Xeon,

8.4. Edycja Makefile 87

and AMD 64-bit systems.
Compiler: GCC
~

2000-05-23
Termcap/ncurses issues: The shell library makes reference
termcap library. Some Linux distributions have an ncurse
which is includes termcap emulation. GENESIS appears to
properly with the ncurses supplied with Red Hat Linux 5.1
and Debian Linux (glibc2.1, egcs-2.91.66). However, link
ncurses is known to have resulted in core dumps in GENESI
Linux versions.
##
If you encounter problems linking with the TERMCAP flags
or the GENESIS command line interface does not work, try
following alternatives:
##
1) TERMCAP = -ltermcap
##
2) (If you are using SuSE Linux)
TERMCAP = /usr/lib/termcap/libtermcap.a
##
3) (If you are using Red Hat Linux prior to version 6.0)
TERMCAP = /usr/lib/libtermcap.a
##

MACHINE=Linux
OS=BSD

XINCLUDE=-I/usr/X11R6/include

64-bit machines probably need /usr/X11R6/lib64 here.
XLIB=/usr/X11R6/lib

CC=mpicc

Old (and probably broken) gcc installations may need the
path to cpp (preferably NOT one in /lib). If there isn’t
[link to] cpp in the same directory as ’cc’, you should c
[re]installing a newer gcc.
CPP=cpp -P
CFLAGS=-O2 -D__NO_MATH_INLINES

88 8. Instalacja i konfiguracja PGENESIS

For 64-bit architectures
CFLAGS=-O2 -D__NO_MATH_INLINES -DLONGWORDS

LD=ld

!!!
Don’t uncomment the next line unless you get errors about
libraries not being found. Setting this path may interfer
the default (probably correct) operation of the loader, b
64-bit architectures may need /usr/lib64 here.
LDFLAGS=-L/usr/lib

RANLIB=ranlib
AR=ar
CPLIB=cp

YACC=bison -y
LEX=flex -l
LEXLIB=-lfl
LIBS= $(LEXLIB) -lm

TERMCAP=-lncurses
TERMOPT=-DTERMIO -DDONT_USE_SIGIO

end Linux 1.2.x and up on Intel x86-based systems

Zwróćmy uwagę, że przypomina on znacząco analogiczny fragment pliku
konfiguracyjnego klasycznego GENESIS.
Dla systemów 64 bitowych odpowiadająca sekcja w plikuMakefile wy-

gląda tak:

~
System: Linux 1.2.x and up on Intel x86-based, Xeon,
and AMD 64-bit systems.
Compiler: GCC
~

2000-05-23
Termcap/ncurses issues: The shell library makes reference
termcap library. Some Linux distributions have an ncurse
which is includes termcap emulation. GENESIS appears to
properly with the ncurses supplied with Red Hat Linux 5.1

8.4. Edycja Makefile 89

and Debian Linux (glibc2.1, egcs-2.91.66). However, link
ncurses is known to have resulted in core dumps in GENESI
Linux versions.
##
If you encounter problems linking with the TERMCAP flags
or the GENESIS command line interface does not work, try
following alternatives:
##
1) TERMCAP = -ltermcap
##
2) (If you are using SuSE Linux)
TERMCAP = /usr/lib/termcap/libtermcap.a
##
3) (If you are using Red Hat Linux prior to version 6.0)
TERMCAP = /usr/lib/libtermcap.a
##

MACHINE=Linux
OS=BSD

XINCLUDE=-I/usr/X11R6/include

64-bit machines probably need /usr/X11R6/lib64 here.
XLIB=/usr/X11R6/lib

CC=mpicc

Old (and probably broken) gcc installations may need the
path to cpp (preferably NOT one in /lib). If there isn’t
[link to] cpp in the same directory as ’cc’, you should c
[re]installing a newer gcc.
CPP=cpp -P
CFLAGS=-O2 -D__NO_MATH_INLINES

For 64-bit architectures
CFLAGS=-O2 -D__NO_MATH_INLINES -DLONGWORDS

LD=ld

!!!
Don’t uncomment the next line unless you get errors about
libraries not being found. Setting this path may interfer

90 8. Instalacja i konfiguracja PGENESIS

the default (probably correct) operation of the loader, b
64-bit architectures may need /usr/lib64 here.
LDFLAGS=-L/usr/lib

RANLIB=ranlib
AR=ar
CPLIB=cp

YACC=bison -y
LEX=flex -l
LEXLIB=-lfl
LIBS= $(LEXLIB) -lm

TERMCAP=-lncurses
TERMOPT=-DTERMIO -DDONT_USE_SIGIO

end Linux 1.2.x and up on Intel x86-based systems

Najważniejszą czynnością, o której często zapominamy i której nie było
w wersji szeregowej GENESIS jest usunięcie komentarza z linii 1353:

when the Makefile has been configured, uncomment this vari
EDITED = yes // to jest linia 1353!

informującego program make, że dokonano edycji pliku Makefile.

8.5. Kompilacja i instalacja

Tak przygotowany plik Makefile pozwala rozpocząć proces kompilacji
i instalacji PGENESIS.

make clean
make install

Proces ten trwa znacznie krócej niż kompilacja właściwego GENESIS, nie
kończy się jakimś specjalnie radosnym komunikatem.
Jeżeli wszystko przebiegło pomyślnie to w katalogu pgenesis/bin po-

winien pojawić się wykonywalny plik pgenesis.
W tym miejscu warto wspomnieć, że gdyby zaszła konieczność instalacji

PGENESIS w wersji bez okienek – należy najpierw skompilować do takiej
wersji używane dotychczas GENESIS. Instalacja PGENESIS bez okienek
dokonuje się po wykonaniu polecenia:

make nxinstall

8.6. Czynności poinstalacyjne 91

Instalację GENESIS bez XODUS opisano wcześniej.
Co więcej, autor zaleca kompilację PGENESIS w wersji bez obsługi

X-Windows ze względu na częste problemy pojawiające się przy okazji
współpracy przestarzałego interfejsu XODUS z najnowszymi bibliotekami
GTK. Poza tym obliczenia równoległe wykonuje się najczęściej na klastrach
obliczeniowych, na których ze względów bezpieczeństwa i tak środowisko
graficzne nie jest zainstalowane.
Wszystkie przykładowe skrypty zawierające równoleglizację bę-

dą tworzone i testowane dla PGENESIS w odmianie bez okienek.
Na tym etapie najważniejszą część instalacji można uznać za zakończo-

ną.

8.6. Czynności poinstalacyjne

Po zainstalowaniu PGENESIS należy skopiować plik .psimrc (albo .nxp-
simrc) z katalogu pgenesis/startup do katalogu głównego:

cd startup
cp .psimrc ~ // albo cp .nxpsimrc ~

Oczywiście do ścieżki dostępów w pliku .bashrc dodajemy frazę:

:/home/student/genesis-2.3/pgenesis/bin

żeby z każdego miejsca w systemie można było uruchamiać wersję równole-
głą.

8.7. Testowanie instalacji

Po kompletnym przygotowaniu i kompilacji środowiska można sprawdzić
z dowolnego miejsca w konsoli systemu czy PGENESIS skompilował się
poprawnie. Należy więc wykonać komendę:

pgenesis

i jeśli wszystko poszło dobrze ba ekranie otrzymujemy informację:

performing checks...
starting pgenesis executable
num_nodes: Undefined variable.

Należy pamiętać, że po dodaniu PGENESIS do ścieżki dostępu powinni-
śmy zamknąć konsolę Linuksa i otworzyć ją raz jeszcze. To najwygodniejszy
sposób przeładowania ścieżki, zapewniający pgenesis widoczność z dowol-
nego miejsca w systemie.

92 8. Instalacja i konfiguracja PGENESIS

8.8. Podsumowanie

Przedstawiono krok po kroku metodologię kompilacji i instalacji bibliote-
ki MPICH2 oraz równoległej wersji symulatora GENESIS. Czytelnikom za-
leca się przygotowanie PGENESIS w wersji bez środowiska X-WINDOWS.

8.9. Zadania

Zadanie 1

Skompiluj ze źródeł i zainstaluj najnowszą wersję biblioteki MPICH2.

Zadanie 2

Skompiluj ze źródeł i zainstaluj PGENESIS w wersji standardowej.

Zadanie 3

Skompiluj i zainstaluj ze źródeł PGENESIS w wersji bez XODUS. Pa-
miętaj o wcześniejszej rekompilacji GENESIS do wersji bez wsparcia syste-
mu X. Możesz stworzyć sobie dodatkowe katalogi na wersje NX obu symu-
latorów, pamiętaj jednak o konieczności dodawania odpowiednich ścieżek
w pliku .bashrc.

Rozdział 9

Symulacje równoległe w PGENESIS

9.1. Wprowadzenie . 94
9.2. Dwa neurony . 94
9.3. Przykładowa sieć rozległa 97
9.4. Kontrola symulacji . 100
9.5. Podsumowanie . 101
9.6. Zadania . 101

Zadanie 1 . 101
Zadanie 2 . 102
Zadanie 3 . 102

94 9. Symulacje równoległe w PGENESIS

9.1. Wprowadzenie

W tym rozdziale nauczymy się rozdzielać zadania symulatora na poszcze-
gólne procesory albo rdzenie procesorów maszyny równoległej. Zaczniemy
od najprostszego modelu zawierającego dwa neurony, skończymy na mode-
lu sieci zawierającej 128 neuronów symulowanych na dwóch procesorach.
Okazuje się, że w PGENESIS występuje zaledwie kilka sztuczek służących
rozplataniu algorytmów na wiele wątków. Sposób równoleglizacji ograniczo-
ny jest tylko wyobraźnią projektanta modelu.

9.2. Dwa neurony

Każdy skrypt, który ma być rozwidlony na kilka współbieżnych procesów
powinien rozpoczynać się od linii:

paron -parallel -nodes 3

W przytoczonym tu przypadku rozpraszamy symulację na trzy nody. Warto
zapamiętać, że w równoległym PGENESIS powinniśmy dbać o pozostawie-
nie jednego dodatkowego nodu na wszelke czynności związane z zarządza-
niem symulacją.
PGENESIS oferuje możliwość tworzenia elementów i uruchamiania po-

leceń na wskazanych nodach symulacji. Służy do tego operator @.
I tak na przykład polecenie:

readcell@1 cell.p /CellA

spowoduje utworzenie komórki CellA przy pomocy mechanizmu cell re-
ader ale tylko na nodzie pierwszym uruchomionej symulacji.
Podobnie polecenie:

le@1

wyświetli nam elementy rezydujące na nodzie pierwszym.
Warto mieć na uwadze, że polecenia wydane w PGENESIS bez operatora

@ wykonują się na wszystkich nodach.
PGENESIS inicjuje również domyślną zmienną mynode, w której prze-

chowywany jest numer nodu na każdym nodzie symulacji z osobna.
Jeżeli chcemy więc wykonać jakieś polecenie, ale tylko w sytuacji gdy

znajdujemy się na określonym nodzie - możemy skorzystać z instrukcji wa-
runkowej:

if ({mynode}==1)
create@1 randomspike /input
setfield@1 ^ min_amp 1 max_amp 1 rate 200 reset 1 reset_value 0
end

9.2. Dwa neurony 95

W tym wypadku stworzono generator losowych impulsów wejściowych na pierw-
szym nodzie symulacji.
Polecenie

barrier

ustawia barierę na wszystkich nodach i powoduje, że wszystkie one czekają
na siebie wzajemnie aż osiągną określoną linię w realizacji zadań zdefinio-
wanych w skrypcie.
Prosty skrypt, w którym tworzymy dwie komórki CellA i CellB re-

azydujące odpowiednio na nodach 1 i 2 oraz generator losowych impulsów
na pierwszym nodzie przyjmuje następującą postać:

paron -parallel -nodes 3
int NodesNumber = 3
setclock 0 0.0001

include functions.g
include pfunctions.g
include protodefs.g

if ({mynode}==1)
readcell@1 cell.p /CellA
end

if ({mynode}==2)
readcell@2 cell.p /CellB
end

if ({mynode}==1)
create@1 randomspike /input
setfield@1 ^ min_amp 1 max_amp 1 rate 200 reset 1 \

reset_value 0
end

barrier

if ({mynode}==1)
make_synapse /input /CellA/dend/Ex_channel 2 0
pmake_synapse /CellA/soma/spike 1 \

/CellB/dend/Ex_channel 2 15 0
end

96 9. Symulacje równoległe w PGENESIS

barrier

if ({mynode}==1)
create spikehistory net-history
setfield ^ filename CellA-at1.spike append 0 ident_toggle 1
addmsg /CellA/soma/spike net-history SPIKESAVE
end

barrier

if ({mynode}==2)
create spikehistory net-history
setfield ^ filename CellB-at2.spike append 0 ident_toggle 1
addmsg /CellB/soma/spike net-history SPIKESAVE
end

barrier

reset
step 0.1 -time
paroff
quit

Zauważmy, że kiedy jesteśmy na pierwszym nodzie – tworzymy synapsę
z generatora losowych impulsów input do komórki CellA. Przy pomocy
funkcji pmake synapse tworzymy połączenie z komórki CellA do CellB.
Zapis wyników na dysk realizujemy na dwóch nodach, dla każdej komórki
z osobna.
Na początku zkryptu dołączamy doń plik pfunctions.g zawierający

funckje równoległe:

function pmake_synapse(pre,npre,post,npost,weight,delay)
str pre,post
float weight,delay
int syn_num,npre,npost

raddmsg {pre} {post}@{npost} SPIKE
syn_num = {getfield@{npost} {post} nsynapses} - 1
setfield@{npost} {post} synapse[{syn_num}].weight {weight} \

synapse[{syn_num}].delay {delay}
echo {pre} ==>> {post} {weight} {delay}

end

9.3. Przykładowa sieć rozległa 97

Zauważmy, że do przesyłania wiadomości między nodami służy polecenie:

raddmsg

Pozostała część funkcji jest analogiczna do klasycznej funkcji tworzącej sy-
napsę między dwoma neuronami. Pilik functions.g zawarty na początku
skryptu jest budowaną przez nas od pierwszych rozdziałów nieniejszej książ-
ki biblioteką funkcji własnych użytkownika GENESIS.
Główny skrypt programu kończy się wyłączeniem równoleglizacji na wszyst-

kich węzłach poleceniem:

paroff

Skrypty równoległe uruchamiamy poleceniem:

pgenesis -nodes 3 -nox nazwa_skryptu.g

pamiętając, że liczba nodów zadeklarowanych na początku uruchamianego
skryptu powinna być taka sama jak liczba nodów podanych w parametrze
-nodes.
Po wykonaniu obliczeń na dysku pojawią się dwa pliki z zapisem aktyw-

ności komórek: CellA.spike oraz CellB.spike.
Mamy namacalny dowód, że komórka stymulowana przez generator na no-

dzie pierwszym przekazała sygnały do komórki na nodzie drugim, przy
czym oba nody niezależnie od siebie zapisywały aktywność przechowywa-
nych na sobie komórek na dysk.

9.3. Przykładowa sieć rozległa

Teraz zrównoleglimy znany nam skądinąd model zawierający dwie kwa-
dratowe (8× 8) sieci neuronów w taki sposób, aby każda z nich rezydowała
ma odrębnym nodzie w symulacji. Siatki net1 i net2 tworzymy wykonu-
jąc polecenie createmap na nodach pierwszym i drugim, podobnie zresztą
czynimy z zapisem aktywności. Generator impulsów stymuluje pierwszą sieć
i rezyduje na pierwszym nodzie. Sieci połączone są w obrębie samych siebie
z prawdopodobieństwem 0.1. Dodatkowo realizowane jest 10% połączenia
pełnego między sieciami w kierunku od net1 do net2. Model tworzony jest
przy pomocy przedłożonego tu skryptu:

paron -nodes 3 -parallel

float sep_x=0.001 // odl. komorek w kierunku x w [m]
float sep_y=0.001 // odl. komorek w kierunku y w [m]

float genrate=200

98 9. Symulacje równoległe w PGENESIS

setclock 0 0.000005
setclock 1 {1.0/{genrate}} // for generator

include functions-wizualizacja.g
include pfunctions.g
include protodefs.g

readcell cell.p /cell

if ({mynode} == 1)
createmap /cell /net1 8 8 -delta {sep_x} {sep_y}
end

if ({mynode} == 2)
createmap /cell /net2 8 8 -delta {sep_x} {sep_y}
end

if ({mynode} == 1)
create randomspike /input
setfield ^ min_amp 1 max_amp 1 rate {genrate} reset 1 \

reset_value 0 abs_refract 0
useclock /input 1

create spikehistory /input-spikes
setfield ^ filename input.spike append 0 ident_toggle 1
addmsg /input /input-spikes SPIKESAVE
end

if ({mynode} == 1)
connect_map /net1 8 8 0.1
end

if ({mynode} == 2)
connect_map /net2 8 8 0.1
end

if ({mynode} == 1)
pconnect_two_maps /net1 1 /net2 2 8 8 0.1
make_synapse /input /net1/cell[0]/dend/Ex_channel 10 0 0
end

9.3. Przykładowa sieć rozległa 99

if ({mynode} == 1)
make_mapoutput /net1/cell net1.spike
end

if ({mynode} == 2)
make_mapoutput /net2/cell net2.spike
end

check
reset

step 1 -time

paroff
quit

przy czym do pliku zawierającego bibliotekę funkcji równoległych użytkow-
nika – pfunctions.g dopisano funkcję łączącą dwie mapy:

function //uwaga: ponizsze argumenty w jednej linii
pconnect_two_maps (net1, npre, net2, npost, nx, ny, prob)

int i,j, netdim

netdim = {nx} * {ny}

for (i=1;i<netdim;i=i+1)
for (j=1;j<netdim;j=j+1)

if ({rand 0 1} < {prob})
pmake_synapse {net1}/cell[{i}]/soma/spike {npre} \

{net2}/cell[{j}]/dend/Ex_channel {npost} \
1.8 1e-04

end
end
end

Po wykonaniu skryptu na dysku powstają dwa pliki: net1.spike oraz
net2.spike z zapisem aktywności obu sieci symulowanych równolegle oraz
plik input.spike z historią pobudzeń generatora.

100 9. Symulacje równoległe w PGENESIS

9.4. Kontrola symulacji

W tym miejscu warto opisać kilka prostych sztuczek, które mogą uła-
twić programowanie równoległych modeli w PGENESIS oraz zarządzanie
symulacją. Tworząc równoległe modele należy pamiętać, że:
— struktury modelu, które charakteryzują się odrębnością i dużą gęsto-
ścią połączeń (na przykład mikroobwody neuronalne) warto umieszczać
na tych samych nodach,

— dużo czasu procesorów marnujemy przesyłając wiadomości między no-
dami dlatego warto określić miejsca w modelu, w których komunika-
cja będzie ograniczona (np. rzadkie połączenia między mikroobwodami)
i to dla nich rezerwować międzynodową wymianę informacji,

— optymalnym rozwiązaniem jest rozproszenie symulacji na tyle nodów
iloma procesorami (rdzeniami) dysponujemy. Oczywiście należy zacho-
wać umiar i nie ma sensu rozpraszanie sieci zawierającej sześć prostych
komórek na sześć procesorów.
Kiedy uruchomimy już symulację warto sprawdzić obciążenie poszczegól-

nych procesorów (lub rdzeni) maszyny. Przydatnym, aczkolwiek niezainsta-
lowanym od samego początku w Ubuntu programem jest htop. Instalujemy
go w najprostszy z możliwych sposobów:

sudo apt-get install htop

i uruchamiamy poleceniem:

htop

Uruchomiony htop wygląda jak na Rys. 9.1.
Czasami zdarzają się sytuacje, w których chcemy sprawdzić jak długo

wykonywał się dany skrypt. Warto posłużyć się napisanym własnoręcznie
w powłoce bash skryptem start.sh o następującej treści:

#!/bin/bash
date > time.out
pgenesis -nodes 3 -nox nazwa_skryptu.g
date >> time.out

Każdemu plikowi w systemie Linux można nadać atrybut wykonywalno-
ści, w tym wypadku wykonując polecenie:

chmod +x start.sh

Chcąc uruchomić symulację wykonujemy skrypt (pamiętamy, że musi on
rezydować w katalogu z modelem):

./start.sh

9.5. Podsumowanie 101

Rysunek 9.1. Równomierne obciążenie obu rdzeni procesora podczas wykonywania
symulacji równoległej

i czekamy na zakończenie.
W wyniku działania skryptu na dysku powstaje dodatkowy plik ti-

me.out o przykładowej treści:

Mon Aug 23 18:29:01 CEST 2010
Mon Aug 23 19:56:54 CEST 2010

z którego łatwo można wyciągnąć informację o czasie wykonania symulacji
z dokładnością do jednej sekundy.

9.5. Podsumowanie

Przedstawiono metodologię równoleglizacji skryptów GENESIS do pracy
w środowisku PGENESIS. Należy zapamiętać, że semantycznie do równo-
leglizacji służy zaledwie kilka poleceń, metody optymalnego zrównoleglania
modeli zależą zaś od wyobraźni programisty. Potrafimy tworzyć elementy
i uruchamiać polecenia PGENESIS na wskazanych nodach maszyny równo-
ległej. Potrafimy też przesyłać informacje między nodami.

9.6. Zadania

Zadanie 1

Stwórz sieć zawierającą trzy komórki:CellA,CellB orazCellC. Umieść
poszczególne komórki na różnych nodach w symulacji. Połącz komórkę Cel-

102 9. Symulacje równoległe w PGENESIS

lA z CellB oraz CellB z CellC. Zaplanuj zapis wyników na dysk wyko-
nywany przez poszczególne nody. Uruchom symulację na czterech nodach.
Przy pomocy polecenia le wyświetl elementy na poszczególnych nodach.

Zadanie 2

Zmodyfikuj model przedstawiony w tym rozdziale w taki sposób, aby
tworzył prostokątne siatki neuronów. Wykonaj symulacje i zmierz czas ich
trwania.

Zadanie 3

Sprawdź czas obliczeń symulacji modelu z Zadania 2 dla kilku róż-
nych wartości prawdopodobieństwa utworzenia synapsy między neuronami
poszczególnych sieci.

Rozdział 10

Dostosowywanie GENESIS

10.1. Wprowadzenie . 104
10.2. Prawdopodobieństwo egzocytozy 104
10.3. Edycja plików źródłowych 104
10.4. Konsekwencje . 106
10.5. Podsumowanie . 107
10.6. Zadania . 107

Zadanie 1 . 107
Zadanie 2 . 107

104 10. Dostosowywanie GENESIS

10.1. Wprowadzenie

W tym rozdziale nauczymy się ingerować bezpośrednio w kod źródłowy
GENESIS. Nie jest to sprawa banalna i wymaga trochę doświadczenia. Jed-
nak głębsza analiza problemu modyfikacji symulatora pozwala nam stworzyć
zupełnie nowe możliwości, a jedynym ograniczeniem będzie tu wyobraźnia.
Po uważnej lekturze niniejszego rozdziału każdy czytelnik będzie mógł po-
czuć dumę GENESIS-owego hakera.

10.2. Prawdopodobieństwo egzocytozy

Mimo, że w dotychczasowych modelach wykorzystywaliśmy generator
liczb pseudolosowych na przykład do generowania impulsów wejściowych
to działanie modeli przez nas projektowanych było z grubsza rzecz biorąc
wysoce powtarzalne. W naturze o taką powtarzalność trudno, żywy orga-
nizm nie jest automatem działającym w sposób tak precyzyjny jak werk
mechanicznego zegarka.
Wiele ciekawych procesów rozgrywa się na poziomie synaptycznym. Sy-

gnał z komórki A przekazywany jest do komórki B w wyniku zajścia tak
zwanej egzocytocy. Upraszczając nieco to niezwykle skomplikowane zjawi-
sko można powiedzieć, że egzocytoza to przekazanie pewnego pęcherzyka
(neuroprzekaźnika) z jednej kolbki synaptycznej do drugiej. Okazuje się, że
mimo sprzyjających warunków – egzocytoza nie za każdym razem ma miej-
sce. Zdefiniujmy więc prawdopodobieństwo zajścia egzocytocy jako szansę
na przekazanie sygnału między neuronami nawet wtedy, gdy wszelkie wa-
runki (w tym wypadku waga połączenia synaptycznego) temu sprzyjają.
Do tej pory każdą synapsę określały dwa parametry: waga – weight

oraz opóźnienie – delay. Zmodyfikujemy kod GENESIS w taki sposób, by
do funkcji tworzącej połączenie synaptyczne trzeba było dodać parametr
określający prawdopodobieństwo – probability.

10.3. Edycja plików źródłowych

W tym celu należy zmienić nieco dwa pliki w kodzie źródłowym GENE-
SIS. Na początku musimy dostać się do katalogu genesis/src i wykonać
polecenie:

make clean

Następnie w katalogu genesis/src/newconn odnajdujemy plik new-
conn struct.h i dopisujemy do linii 146 jedną linijkę kodu (nie zapomina-

10.3. Edycja plików źródłowych 105

jąc o przełamaniu jej popularnym backslashem) w taki sposób, by interesu-
jący nas fragment pliku (linie od 143 do 147) wyglądały następująco:

#define SYNAPSE_TYPE \
MsgIn* mi; \
float weight; \
float delay; \
float probability; // by gmwojcik 31.08.2011

Warto dodać komentarz z własnym pseudonimem, żeby później było wia-
domo co i gdzie dopisaliśmy.
Następnie odnajdujemy plik synchan.c znajdujący się w tym samym

katalogu i rozpoczynamy taniec z prawdopodobieństwem (linia 343) w taki
sposób, by linie od 343 do 354 wyglądały jak tu:

if (frandom(0,1.0) <= channel->synapse[syn].probability)
channel->activation += channel->synapse[syn].weight / dt;
} //modified by gmwojcik 31.08.2011

if (next_event != NULL) {
if (nothsolve) {
--next_event->time;
} else {
channel->time_last_event=SimulationTime();
}
}
}

Pamiętamy o dopisaniu odpowiedniego komentarza do dopisanej linijki.
W gruncie rzeczy dopisaliśmy tylko jedną linię kodu w języku c++ – wywo-
łanie odpowiedniej, zależnej od pola probability instrukcji warunkowej.
Po zapisaniu obu plików przechodzimy z powrotem do katalogu genesi-

s/src i dokonujemy ponownej kompilacji i instalacji środowiska:

make nxall
make nxinstall

w tym wypadku bez XODUS. Pamiętajmy, że gdybyśmy chcieli korzystać
z GENESIS w wersji równoległej – należy również przekompilować i zainsta-
lować ponownie PGENESIS. Teraz jednak będzie nam trochę łatwiej gdyż
odpadają nudne i żmudne czynności związane z dopisywaniem ścieżek dostę-
pu do .bashrc i kopiowaniem plików typu .simrc do katalogu domowego.

106 10. Dostosowywanie GENESIS

10.4. Konsekwencje

W konsekwencji otrzymaliśmy zupełnie nowy, taki tylko nasz GENE-
SIS z nowym typem synapsy uwzględniającym prawdopodobieństwo zajścia
egzocytozy. W podobny sposób można definiować sobie inne typy synaps.
Niestety skrypty napisane do tej pory nie będą już działać w takim

symulatorze bez drobnej modyfikacji. (Dlatego warto rozważyć kompilację
zmodyfikowanego GENESIS w jakimś innym katalogu). Od tej pory funkcja
tworząca synapsę musi być wzbogacona o trzecie pole – probability:

function make_synapse(pre,post,weight,delay, prob)
str pre,post
float weight,delay
int syn_num

addmsg {pre} {post} SPIKE
syn_num = {getfield {post} nsynapses} - 1
setfield {post} synapse[{syn_num}].weight {weight} \

synapse[{syn_num}].delay {delay} \
synapse[{syn_num}].probability {prob}

echo {pre} "--->" {post} {weight} {delay} {prob}

end

i zauważmy, że chociaż nie musimy tego robić – wyświetlamy wartość praw-
dopodobieństwa obok wagi i opóźnienia.
Wywołania takiej funkcji gdzieś z poziomu skryptu w modelu mają po-

stać:

make_synapse /cell_A/soma/spike \
/cell_B/dend/Ex_channel 2.8 1e-04 0.95

make_synapse /cell_A/soma/spike \
/cell_B/dend/Ex_channel 2.8 1e-04 0.25

dla prawdopodobieństw egzocytozy ustawionych odpowiednio na p = 0, 95
i p = 0, 25
Na potrzeby niniejszego rozdziału stworzono model zawierający dwie ko-

mórki połączone ze sobą synapsą o takich właśnie prawdopodobieństwach
egzocytozy. Symulację uruchomiono dwa razy (dla każdej wartości po jed-
nym razie). Przebieg potencjału na drugiej komórce przedstawiają Rys. 10.1
i 10.2. Co oczywiste – komórka zasilana synapsą o mniejszym prawdo-
podobieństwie p „pika” rzadziej, jednak przy odpowiednio długim czasie
symulacji biologicznej aktywności systemu – za każdym razem inaczej.

10.5. Podsumowanie 107

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0 0.05 0.1 0.15 0.2 0.25

V
m

 [
V

]

t [s]

Cell B Vm, p=0.95

Rysunek 10.1. Przebieg potencjału błony komórkowej neuronu pobudzanego sy-
napsą o prawdopodobieństwie zajścia egzocytozy p = 0, 95

10.5. Podsumowanie

Przedstawiono krok po kroku proces ingerencji w kod źródłowy GENE-
SIS prowadzący do zmiany charakterystyki typowej synapsy. Uzależnienie
przekazywania sygnału od wprowadzenia prawdopodobieństwa egzocytozy
ma istotne znaczenie wszędzie tam gdzie chcemy badać statystykę zachowa-
nia modelu zwierającego dużą liczbę symulowanych neuronów. W podob-
ny sposób można pomyśleć o innych typach synaps i zaimplementować je
we wskazane miejsca w kodzie.

10.6. Zadania

Zadanie 1

Skompiluj zmodyfikowaną wersję GENESIS zawierającą prawdopodo-
bieństwo zajścia egzocytozy wbudowane w synapsę. Możesz zbudować nową
wersję GENESIS w innym katalogu niż oryginał, pamiętaj jednak wtedy
o zmianie ścieżki w .bashrc i podmianie plików typu .simrc w katalogu
domowym.

Zadanie 2

Przeprowadź kilka symulacji wybranego spośród omawianych w tej książ-

108 10. Dostosowywanie GENESIS

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0 0.05 0.1 0.15 0.2 0.25

V
m

 [
V

]

t [s]

Cell B Vm, p=0.25

Rysunek 10.2. Przebieg potencjału błony komórkowej neuronu pobudzanego sy-
napsą o prawdopodobieństwie zajścia egzocytozy p = 0, 25

ce modelu z uwzględnieniem prawdopodobieństwa zajścia egzocytozy. Po-
równaj rozmiary plików z zapisem aktywności komórek dla różnych wartości
prawdopodobieństwa.

Rozdział 11

Uwagi końcowe

110 11. Uwagi końcowe

W książce przedstawiono kurs modelowania w symulatorze GENESIS,
zarówno w jego wersji klasycznej jak i w równoległej.
Czytelnik miał okazję poznać podstawy modelowania komórek biologicz-

nych ze szczególnym uwzględnieniem modelu Hodgkina–Huxleya.
W przypadku GENESIS praktykę modelowania rozpoczyna się od two-

rzenia modeli pojedynczych komórek, a następnie ich sieci. Duże sieci neuro-
nów biologicznych można programować w taki sposób, by symulacja mogła
odbywać się na klastrach obliczeniowych.
Przedstawiono metody wizualizacji aktywności sieci z wykorzystaniem

wbudowanych w GENESIS narzędzi, a także programów zewnętrznych ofe-
rujących sporo możliwości w generowaniu reprezentacji dynamiki pojedyn-
czych komórek.
Wskazano też możliwe kierunki modyfikowania oprogramowania w celu

uzyskania nowych funkcjonalności.
Książka pozwala w sposób łagodny wejść w problematykę modelowania

w GENESIS, autor wyraża nadzieję iż stanie się ona przydatnym podręcz-
nikiem dla wszystkich tych, którzy pragną rozpocząć badania w zakresie
neuronauki obliczeniowej.

Dodatek A

Ważniejsze modele autora

A.1. Model kory baryłkowej szczura 112
A.2. Model kory wzrokowej zawierającej maszyny LSM . . . 112

112 A. Ważniejsze modele autora

Opis modeli wykorzystywanych w prowadzonych przez autora ekspery-
mentach zaczerpnięto z monografii pod tytułem „Obliczenia płynowe w mo-
delowaniu mózgu” [20]. Zainteresowani czytelnicy mogą znaleźć tam również
szczegółowo opisane wyniki badań prowadzonych przez autora na przedsta-
wianych tu modelach.

A.1. Model kory baryłkowej szczura

Model kory baryłkowej szczura zbudowano w środowisku GENESIS.
Na siatce 45×45 skonstruowano sieć zawierającą 2045 neuronów, nazywaną
od tej pory modelem 2k [20].
Para liczb naturalnych z przedziału od 0 do 44 w sposób jednoznacz-

ny identyfikowała każdy neuron. Wszystkie komórki podzielono na 22 sek-
cje zwane warstwami numerowanymi od 1 do 22 (rys. A.1). Komunikację
między neuronami ustalono według określonych zasad. Sygnał z każdej ko-
mórki z warstwy m był transmitowany na zewnątrz do komórek z warstw
m + 1,m + 2, . . . ,m + Ns, gdzie Ns, zwane liczbą sąsiedztw, było zawsze
nie większe niż liczba warstw. Struktura taka dość wiernie naśladowała gę-
ste pierścienie dendrytyczne w baryłkach kory. Ponieważ symulacje były
prowadzone z wykorzystaniem szesnastu procesorów, całą siatkę podzielono
na 15 stref, zostawiając jeden procesor do zarządzania całą symulacją [20].
Połączenia synaptyczne w modelu charakteryzowane są przez dwa para-

metry zależne od odległości między neuronami: wagę w = w0/|m− n| oraz
opóźnienie τ = |m−n|10−4 s. parametr w0 we wszystkich symulacjach przyj-
mował wartość 2. Układ jest stymulowany za pośrednictwem generatora wy-
syłającego impulsy z częstotliwością f=80 Hz, podłączonego do centralnego
neuronu N23,23. Stymulacja ta przypomina pobudzanie szczurzego wibry-
sa za pomocą rurki kapilarnej lub elektrody wpiętej bezpośrednio w korę
czuciowo-somatyczną [20].
Dodatkowo symulacja charakteryzowana jest przez parametr T oznacza-

jący czas biologicznej pracy układu, u nas w większości przypadków T = 15 s
[20].
Pobudzenie neuronu centralnego było transmitowane zgodnie z architek-

turą połączeń. Jako lawinę potencjału czynnościowego zdefiniowano liczbę
neuronów w stanie wzbudzenia (wystrzeliwujących iglicę potencjału czyn-
nościowego) w określonym interwale czasowym t = 1 ms [20].

A.2. Model kory wzrokowej zawierającej maszyny LSM

Podstawowe serie eksperymentów polegających na badaniu zdolności se-
paracji maszyn płynowych prowadzono na modelu układu wzrokowego za-

A.2. Model kory wzrokowej zawierającej maszyny LSM 113

22

22

440

0

44

2 3 4 9 10 11 12 14 151 5 6 7 138

Rysunek A.1. Schemat modelu 2k. Warstwy oznaczono liniami pogrubionymi, neu-
ron stymulujący czarnym kwadratem. Współrzędne neuronów zaznaczono na górze
oraz po lewej stronie schematu. W każdej strefie (zaznaczonej na dole) znajdują się

trzy kolumny neuronów [20]

114 A. Ważniejsze modele autora

wierającego około szesnastu tysięcy komórek HH i stąd nazywanego mode-
lem 16k. W tym modelu (rys. A.2) siatkówka zbudowana jest z 256 neuronów
rozmieszczonych na siatce 16× 16 [20]. Siatkówka została podzielona na 16

Rysunek A.2. Schemat modelu 16k. Zaznaczono przykładową strukturę połączeń
między kolumnami [20]

pól recepcyjnych rozpiętych na siatce o wymiarach 4 × 4. Każde z pól re-
cepcyjnych (również o wymiarach 4× 4) jest połączone z jedną z szesnastu
kolumn HHLSM (Hodgkin–Huxley Liquid State Machine) odpowiadających
ciału kolankowatemu bocznemu i fragmentowi kory wzrokowej. W obrębie
kolumn HHLSM zaaranżowano strukturę (rys. A.3) odpowiadającą rzeczy-
wistym połączeniom międzywarstwowym w korze mózgu. Na rys. A.3 warto
zwrócić uwagę na połączenie zwrotne wyprowadzone z warstwy L6 do LGN.
Każda kolumna HHLSM jest niezależną maszyną płynową i zawiera 1024
komórki rozmieszczone na trójwymiarowej siatce 8×8×16. Każda z warstw
L2–L6 zawiera neurony położone na siatce 8×8×3. Warstwa LGN to układ
o wymiarach 8× 8× 1 [20].
Neurony w obrębie warstwy mogą być połączone na zasadzie każdy z każ-

dym (co niemal gwarantuje szybką synchronizację układu) lub z ustalonym
prawdopodobieństwem. Warstwy A i B łączy się według reguły polegają-
cej na tym, że ostatnia podwarstwa warstwy A jest połączona z pierwszą
podwarstwą warstwy B. Podwarstwy mają wymiary 8× 8× 1 [20].
W zgodzie z wiedzą zaczerpniętą ze źródeł neurofizjologicznych oraz

z teorią Maassa w obrębie każdej kolumny ustalono 80% połączeń wzbu-
dzających i 20% połączeń hamujących. Neurony tworzące całą strukturę
były stosunkowo prostymi komórkami typu HH zawierającymi ciało i dwa
dendryty każda [20].
W zależności od konkretnego eksperymentu komputerowego kolumny

HHLSM mogły być połączone ze sobą lub też nie, a twórca modelu przewi-
dział możliwość dodawania połączeń między komórkami w szybki i prosty
sposób [20].

A.2. Model kory wzrokowej zawierającej maszyny LSM 115

L6

L5

L2

L3

L4

LGN

Rysunek A.3. Schemat kolumny HHLSM z zaznaczoną strukturą połączeń [20]

Tak modelowany układ wzrokowy może zostać następnie poddany eks-
pertyzom rozmaitych warstw odczytujących. Co więcej, struktura modelu
gwarantuje dobrą równoleglizację oraz bezproblemowe zwiększenie liczby
symulowanych komórek do około 256 tysięcy (model 256k) przy dokonaniu
podziału siatkówki na pola recepcyjne zawierające tylko jedną komórkę.
Przykładowo na rys. A.4 przedstawiono schemat modelu 64k, w którym
siatkówkę stanowią 64 pola recepcyjne o wymiarach 2 × 2, rozmieszczone
na siatce 8× 8 i połączone z 64 kolumnami HHSLM [20].

Rysunek A.4. Schemat modelu 64k. Zaznaczono przykładową strukturę połączeń
między kolumnami [20]

Dodatek B

Rezultaty i publikacje autora

B.1. Ważniejsze rezultaty . 119

B.2. Streszczenia artykułów 119

G. M. Wojcik, “Self-organising criticality in the
simulated models of the rat cortical
microcircuits,” Neurocomputing, no. 79, pp.
61–67, 2012. 119

G. M. Wojcik, “Electrical parameters influence on the
dynamics of the hodgkin-huxley liquid state
machine,” Neurocomputing, no. 79, pp. 68– 78,
2012. 125

G. M. Wojcik and W. A. Kaminski, “Self-organised
criticality as a function of connections’ number
in the model of the rat somatosensory cortex,”
in Computational Science – ICCS 2008, vol.
5101 of Lecture Notes in Computer Science, pp.
620–629, Springer, 2008. 125

G. M. Wojcik and W. A. Kaminski, “Nonlinear
behaviour in mpi- parallelised model of the rat
somatosensory cortex,” Informatica, vol. 19, no.
3, pp. 461–470, 2008. 126

G. M. Wojcik, W. A. Kaminski, and P. Matejanka,
“Self-organised criticality in a model of the rat
somatosensory cortex,” in Parallel Computing
Technologies, vol. 4671 of Lecture Notes in
Computer Science, pp. 468–475, Springer, 2007. 126

G. M. Wojcik and W. A. Kaminski, “Liquid state
machine and its separation ability as function of
electrical parameters of cell,” Neurocomputing,
vol. 70, no. 13–15, pp. 2593–2697, 2007. 127

118 B. Rezultaty i publikacje autora

G. M. Wojcik and W. A. Kaminski, “Liquid
computations and large simulations of the
mammalian visual cortex,” in Computational
Science – ICCS 2006, vol. 3992 of Lecture Notes
in Computer Science, pp. 94–101, Springer, 2006. 127

G. M. Wojcik and W. A. Kaminski, “Large scalable
simulations of mammalian visual cortex,” in
Parallel Processing and Applied Mathematics,
vol. 3911 of Lecture Notes in Computer Science,
pp. 399– 405, Springer, 2005. 127

B.1. Ważniejsze rezultaty 119

W tym dodatku przedstawiono wybrane wykresy pochodzące z badań
opublikowanych przez autora w latach 2005–2012. W celu szczegółowego
zapoznania się ze znaczeniem uzyskanych wyników odsyłamy do artykułów.
W drugiej części dodatku przedstawiono angielskie streszczenia najważniej-
szych z nich.

B.1. Ważniejsze rezultaty

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400 450 500

u

t [ms]

retina
hypercolumn

Rysunek B.1. Typowe wzmocnienie odległości stanów w maszynie LSM ma przy-
kładzie zdolności separacji siatkówki oraz kolumny kory (za: [20])

B.2. Streszczenia artykułów

G. M. Wojcik, “Self-organising criticality in the simulated
models of the rat cortical microcircuits,” Neurocomputing, no.
79, pp. 61–67, 2012.

Two and three dimensional models of rat barrel and somatosensory cor-
tex were simulated. Hoddgkin–Huxley and Leaky-Integrate-and-Fire neu-
rons were used to the construction of the networks in GENESIS and PCSIM
environments. The dynamics of both models was analysed. Self-organising

120 B. Rezultaty i publikacje autora

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700 800 900 1000

d
(u

,v
)

t [ms]

Cm=10 mF
Cm=15 mF
Cm=20 mF

Rysunek B.2. Zdolność separacji maszyny LSM w zależności o pojemności błony
komórkowej (za: [20])

0

5

10

15

20

25

30

3 3.5 4 4.5 5 5.5 6 6.5 7

S
ta

te
 D

is
ta

n
c
e

τ [ms]

T=100 ms

T=120 ms

T=150 ms

T=200 ms

T=300 ms

T=400 ms

T=500 ms

Rysunek B.3. Zdolność separacji maszyny LSM w zależności od stałej czasowej
błony komórkowej (za: [20])

B.2. Streszczenia artykułów 121

-100

-50

 0

 50

 100

 150

 200

 250

 300

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04

d
V

/d
t

[V
/s

]

V [V]

Rysunek B.4. Przykładowe odwzorowanie dynamiki neuronu w przestrzeni fazowej
potencjału – przewidywalna trajektoria (za: [20])

-100

-50

 0

 50

 100

 150

 200

 250

 300

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04

d
V

/d
t

[V
/s

]

V [V]

Rysunek B.5. Przykładowe odwzorowanie dynamiki neuronu w przestrzeni fazowej
potencjału – trajektoria bardziej rozmyta niż na rys. B.4 (za: [20])

122 B. Rezultaty i publikacje autora

-100

-50

 0

 50

 100

 150

 200

 250

 300

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04

d
V

/d
t

[V
/s

]

V [V]

Rysunek B.6. Przykładowe odwzorowanie dynamiki neuronu w przestrzeni fazowej
potencjału – trajektoria świadcząca o nieliniowej dynamice wybranego neuronu (za:

[20])

B.2. Streszczenia artykułów 123

1

10

100

1000

1 10 100 1000

D
(s

)

s

Ns=10, T=20 s

Rysunek B.7. Typowy wykres przedstawiający występowanie zjawiska samoorga-
nizującej się krytyczności w korze baryłkowej szczura (za: [20])

1

10

100

1000

1 10 100 1000

D
(s

)

s

Ns=7, px=0.03, T=20 s
Ns=7, px=0.9, T=20 s

Rysunek B.8. Skala samoorganizującej się krytyczności w zależności od prawdopo-
dobieństwa egzocytozy w sieci typu 2.5k (za: [20])

124 B. Rezultaty i publikacje autora

1

10

100

1000

1 10 100 1000

D
(s

)

s

Ns=7, px=0.03, T=20 s
Ns=7, px=0.9, T=20 s

Rysunek B.9. Zjawiska SOC dla ustalonej liczby połączeń i zmieniającego się praw-
dopodobieństwa egzocytozy i zmiennej liczby połączeń między strefami modelu 2.5k

(za: [20])

B.2. Streszczenia artykułów 125

criticality phenomena were found. Profound investigations of this behaviour
showed its dependence not only on the number of connections, but also on
the simulated network architecture originating, e.g., from varying probabi-
lity of exocytosis or synapse creation in the selected areas of the network.
For 2-D model the results were compared to that obtained for smaller mo-
dels and analysis of this comparison is presented to some extent. The three
dimensional model of the rat primary somatosensory cortex based on the
ensemble of Liquid State Machines. The results obtained from that model
are in good agreement with the dynamics recorded in neurophysiological
experiments on real brain [28].

G. M. Wojcik, “Electrical parameters influence on the dynamics
of the hodgkin-huxley liquid state machine,” Neurocomputing,
no. 79, pp. 68– 78, 2012.

The model of mammalian cortical hypercolumn was simulated using li-
quid state machines built of simple Hodgkin–Huxley neurons. The influence
of cell electrical parameters on the system dynamics was investigated. The
systematic analysis of the hypercolumn separation ability in the function
of time constants, cell membrane capacitance, resistance, Hodgkin–Huxley
equilibrium potential and sodium and potassium channel conductances was
performed. Optimal ranges of time constants for the most effective compu-
tational abilities of the model were estimated [29].

G. M. Wojcik and W. A. Kaminski, “Self-organised criticality as
a function of connections’ number in the model of the rat
somatosensory cortex,” in Computational Science – ICCS 2008,
vol. 5101 of Lecture Notes in Computer Science, pp. 620–629,
Springer, 2008.

The model of the part of the rat somatosensory cortex was examined.
Large network of Hodgkin-Huxley neurons was simulated and the modular
architecture of this structure divided into layers and sub-regions was imple-
mented. High degree of complexity required effective parallelisation of the
simulation. In this article the results of the parallel neural computations are
presented. An occurrence of the self-organised criticality was observed and
its characteristics as a function of the connections number was investiga-
ted. It was proved that frequency of the so-called spike potential avalanches
depends on the density of inter-neuron connections. In addition some bench-
marking runs were conducted and parallelisation effectiveness is presented
to some extent [30].

126 B. Rezultaty i publikacje autora

G. M. Wojcik and W. A. Kaminski, “Nonlinear behaviour in
mpi- parallelised model of the rat somatosensory cortex,”
Informatica, vol. 19, no. 3, pp. 461–470, 2008.

Mammalian brains consisting of up to 1011 neurons belong to group
of the most complex systems in the Universe. For years they have been
one of the hardest objects of simulation. There are many different appro-
aches to modelling of neurons, but one of the most biologically correct is
Hodgkin-Huxley (HH) model. Simulations that require solving a large num-
ber of nonlinear differential equations (fundamental in HHmodel) are always
time and power consuming. The structures discussed in this article simulate
a part of the rat somatosensory cortex. We use a modular architecture of
the network divided into layers and sub-regions. Because of a high degree
of complexity effective parallelisation of algorithms is required. We propose
method of parallelisation for the network and the results of simulations using
GENESIS parallelised for MPI environment are presented. An occurrence
of nonlinear behaviour is demonstrated. Most notably, in large biological
neural networks consisting of the HH neurons, nonlinearity is shown to ma-
nifest itself in the Poincaré sections generated for the varying value of neural
membrane’s potential [31].

G. M. Wojcik, W. A. Kaminski, and P. Matejanka,
“Self-organised criticality in a model of the rat somatosensory
cortex,” in Parallel Computing Technologies, vol. 4671 of
Lecture Notes in Computer Science, pp. 468–475, Springer, 2007.

Large Hodgkin-Huxley (HH) neural networks were examined and the
structures discussed in this article simulated a part of the rat somatosen-
sory cortex. We used a modular architecture of the network divided into
layers and sub-regions. Because of a high degree of complexity effective pa-
rallelisation of algorithms was required. The results of parallel simulations
were presented. An occurrence of the self-organised criticality (SOC) was
demonstrated. Most notably, in large biological neural networks consisting
of artificial HH neurons, the SOC was shown to manifest itself in the frequ-
ency of its appearance as a function of the size of spike potential avalanches
generated within such nets. These two parameters followed the power law
characteristic of other systems exhibiting the SOC behaviour [32].

B.2. Streszczenia artykułów 127

G. M. Wojcik and W. A. Kaminski, “Liquid state machine and
its separation ability as function of electrical parameters of cell,”
Neurocomputing, vol. 70, no. 13–15, pp. 2593–2697, 2007.

Large artificial Hodgkin-Huxley neural networks are examined. The struc-
tures discussed in this article simulate a part of the cortex of the mammalian
visual system. We use a modular architecture of the cortex divided into
sub-regions. Results of parallel simulations based on the Liquid Computing
theory are presented in some detail. Separation ability of groups of neural
microcircuits is observed. We check if such property depends on electrical
parameters of particular cells. Properties Liquid Sate Machine’s are derived
from the types of neurons used for simulations. They are compared and
discussed to some extent [33].

G. M. Wojcik and W. A. Kaminski, “Liquid computations and
large simulations of the mammalian visual cortex,” in
Computational Science – ICCS 2006, vol. 3992 of Lecture Notes
in Computer Science, pp. 94–101, Springer, 2006.

Large artificial Hodgkin-Huxley neural networks are examined. The struc-
tures discussed in this article simulate the cortex of the mammalian vi-
sual system. We use a modular architecture of the cortex divided into
sub-regions. Results of parallel simulations based on the liquid computing
theory are presented in some detail. Separation ability of groups of neural
microcircuits is observed. We show that such property may be useful for
explaining some edge or contrast detection phenomena [34].

G. M. Wojcik and W. A. Kaminski, “Large scalable simulations
of mammalian visual cortex,” in Parallel Processing and Applied
Mathematics, vol. 3911 of Lecture Notes in Computer Science,
pp. 399– 405, Springer, 2005.

Large artificial neural networks are examined. Structures discussed in
this article simulate the cortex of mammalian visual system and its dyna-
mics. Simulations of thousands of Hodgkin-Huxley neurons always require
high computational power. Discussion of such networks parallelisation is
presented in some detail. Analysis of simulation time, algorithm’s speedup
as a function of processors’ number and density of connections is discussed
as well [35].

Dodatek C

Zdjęcia pamiątkowe

130 C. Zdjęcia pamiątkowe

Rysunek C.1. Klaster Clusterix i autor stojący obok klastra. Zbudowany z dwu-
nastu dwuprocesorowych komputerów wyposażonych każdy w dwa procesory Ita-
nium 2 1,4 GHz, 4 GB pamięci operacyjnej i 74 GB pamięci dyskowej. Maszyna
stanowiła lubelski moduł Krajowego Klastra Linuksowego [36] wdrażanego w latach
2004–2005. Autor w ramach projektu Clusterix przeprowadzał symulacje wielkiej
skali kory mózgowych ssaków wykorzytując pakiet GENESIS w wersji równoległej.

(Fot. Stefan Ciechan)

131

Rysunek C.2. Autor skryptu z twórcą GENESIS Davidem Beemanem oraz jego
żoną w sierpniu 2001 podczas szkoły EU Advanced Course in Computational Neu-

roscience w Obidos w Portugalii

Spis rysunków

1.1. Schemat neuronu biologicznego (za: [20]) 3
1.2. Neuron unipolarny (jednobiegunowy) (za: [21]) 5
1.3. Neuron bipolarny (dwubiegunowy) (za: [21]) 6
1.4. Neuron piramidalny (za: [21]) 6
1.5. Neuron Golgiego (za: [21]) . 7
1.6. Neuron gwiaździsty (za: [21]) 7
1.7. Komórka amokrynowa (za: [21]) 7
1.8. Neuron kłębuszkowy (za: [21]) 8
1.9. Neuron Purkinjego (za: [21]) 8
1.10. Model komórki nerwowej oraz schemat jej podziału

na elementy składowe (za: [19]) 10
1.11. Element składowy neuronu jako obwód elektryczny. (za: [19]) 10
1.12. Wizualizacja komórki Purkinjego z prac Erika De Schuttera

[23] . 13

2.1. Konsola nowozainstalowanego GENESIS. 25
2.2. Nowozaistalowane GENESIS uruchomiony w trybie

graficznym. 26

4.1. Panel sterowania symulacją Neuron.g 40
4.2. Wykresy aktywności wejścia, przewodności oraz potencjału

dendrytu w symulacji Neuron.g 41
4.3. Wykresy parametrów aktywacji kanałów HH, przewodności

oraz potencjału błony komórkowej w symulacji Neuron.g . . . 42
4.4. Panel sterowania symulacją Squid.g 43
4.5. Kontrola kanałów sodowych i potasowych w symulacji Squid.g 43
4.6. Kontrola impulsów wejściowych w symulacji Squid.g 44
4.7. Kontrola zewnętrznych stężeń jonowych w symulacji Squid.g . 44
4.8. Wykresy aktywności wejścia oraz potencjału błony,

przewodności i prądu w kanałach jonowych w symulacji
Squid.g . 44

4.9. Panel sterowania symulacją Hebb.g 45
4.10. Wykres przewodności kanału w symulacji Hebb.g 46

134 SPIS RYSUNKÓW

4.11. Wykres aktywności presynaptycznej w symulacji Hebb.g . . . 46
4.12. Wykres aktywności postsynaptycznej w symulacji Hebb.g . . 47
4.13. Wykres zmieniającej się wagi synaptycznej w symulacji Hebb.g 47

5.1. Potencjał błony komórkowej bez kanałów jonowych i bez
uwzględnienia jednostek SI. 53

5.2. Potencjał błony komórkowej bez kanałów jonowych, ale
z uwzględnieniem jednostek SI. 56

5.3. Potencjał błony komórkowej z kanałami jonowymi
i z uwzględnieniem jednostek SI. 59

6.1. Potencjał błony komórkowej neuronu podłączonego
do generatora typu randomspike 67

6.2. Potencjał błon komórkowych neuronów cell A i cell B
w pierwszych 250 ms symulacji 69

7.1. Wizualizacja aktywności sieci w XODUS. 82

9.1. Równomierne obciążenie obu rdzeni procesora podczas
wykonywania symulacji równoległej 101

10.1. Przebieg potencjału błony komórkowej neuronu pobudzanego
synapsą o prawdopodobieństwie zajścia egzocytozy p = 0, 95 . 107

10.2. Przebieg potencjału błony komórkowej neuronu pobudzanego
synapsą o prawdopodobieństwie zajścia egzocytozy p = 0, 25 . 108

A.1. Schemat modelu 2k. Warstwy oznaczono liniami
pogrubionymi, neuron stymulujący czarnym kwadratem.
Współrzędne neuronów zaznaczono na górze oraz po lewej
stronie schematu. W każdej strefie (zaznaczonej na dole)
znajdują się trzy kolumny neuronów [20] 113

A.2. Schemat modelu 16k. Zaznaczono przykładową strukturę
połączeń między kolumnami [20] 114

A.3. Schemat kolumny HHLSM z zaznaczoną strukturą połączeń
[20] . 115

A.4. Schemat modelu 64k. Zaznaczono przykładową strukturę
połączeń między kolumnami [20] 115

B.1. Typowe wzmocnienie odległości stanów w maszynie LSM
ma przykładzie zdolności separacji siatkówki oraz kolumny
kory (za: [20]) . 119

B.2. Zdolność separacji maszyny LSM w zależności o pojemności
błony komórkowej (za: [20]) 120

SPIS RYSUNKÓW 135

B.3. Zdolność separacji maszyny LSM w zależności od stałej
czasowej błony komórkowej (za: [20]) 120

B.4. Przykładowe odwzorowanie dynamiki neuronu w przestrzeni
fazowej potencjału – przewidywalna trajektoria (za: [20]) . . . 121

B.5. Przykładowe odwzorowanie dynamiki neuronu w przestrzeni
fazowej potencjału – trajektoria bardziej rozmyta niż na rys.
B.4 (za: [20]) . 121

B.6. Przykładowe odwzorowanie dynamiki neuronu w przestrzeni
fazowej potencjału – trajektoria świadcząca o nieliniowej
dynamice wybranego neuronu (za: [20]) 122

B.7. Typowy wykres przedstawiający występowanie zjawiska
samoorganizującej się krytyczności w korze baryłkowej
szczura (za: [20]) . 123

B.8. Skala samoorganizującej się krytyczności w zależności
od prawdopodobieństwa egzocytozy w sieci typu 2.5k (za: [20])123

B.9. Zjawiska SOC dla ustalonej liczby połączeń i zmieniającego
się prawdopodobieństwa egzocytozy i zmiennej liczby
połączeń między strefami modelu 2.5k (za: [20]) 124

C.1. Klaster Clusterix i autor stojący obok klastra. Zbudowany
z dwunastu dwuprocesorowych komputerów wyposażonych
każdy w dwa procesory Itanium 2 1,4 GHz, 4 GB pamięci
operacyjnej i 74 GB pamięci dyskowej. Maszyna stanowiła
lubelski moduł Krajowego Klastra Linuksowego [36]
wdrażanego w latach 2004–2005. Autor w ramach projektu
Clusterix przeprowadzał symulacje wielkiej skali kory
mózgowych ssaków wykorzytując pakiet GENESIS w wersji
równoległej. (Fot. Stefan Ciechan) 130

C.2. Autor skryptu z twórcą GENESIS Davidem Beemanem oraz
jego żoną w sierpniu 2001 podczas szkoły EU Advanced
Course in Computational Neuroscience w Obidos w Portugalii 131

Bibliografia

[1] R. Tadeusiewicz, Theoretical Neurocybernetics. Warsaw: Warsaw University
Publishers, 2009.

[2] R. Tadeusiewicz, Theoretical Neurocybernetics [In Polish: Neurocybernetyka
Teoretyczna], ch. Models of the nervous system elements as artificial neural
networks [In Polish: Modele elementów układu nerwowego w postaci sztucz-
nych sieci neuronowych], pp. 109–127. Warsaw University Publishers, 2009.

[3] E. Mikołajewska and D. Mikołajewski, “Wybrane zastosowania modeli kom-
puterowych w medycynie,” Annales Academiae Medicae Silesiensis, vol. 1,
no. 2, pp. 70–87, 2011.

[4] R. Tadeusiewicz, Problems of Biocybernetics. Warsaw: Polish Scientific Pu-
blishers (PWN), 1994.

[5] R. Tadeusiewicz, Informatyka i psychologia w społeczeństwie informacyjnym,
ch. Neural Networks as Computational Tool with Interesting Psychological
Applications [In Polish: Sieci neuronowe i inne systemy neurocybernetyczne
jako narzędzia informatyczne o ciekawych zastosowaniach na gruncie psycho-
logii], pp. 49–101. AGH Publishers, Kraków 2011.

[6] R. Tadeusiewicz, The Industrial Electronics Handbook – Intelligent Systems by
B.M. Wilamowski, J.D. Irvin (eds.), ch. Introduction to Intelligent Systems,
pp. 1.1–1.12. CRC Press, Boca Raton, 2011.

[7] R. Tadeusiewicz, “New trends in neurocybernetics,” Computer Methods in
Materials Science, vol. 10, no. 1, pp. 1–7, 2010.

[8] R. Tadeusiewicz, Lecture Notes in Artificial Intelligence 6114 by L. Rutkowski
(et al., eds.), ch. Artificial Intelligence and Soft Computing, pp. 104–123.
Springer-Verlag, Berlin – Heidelberg – New York, 2010.

[9] R. Tadeusiewicz, On the paths of Neuroscience by Piotr Fracuz (ed.), ch. Mo-
delling of the neural system elements with the neural networks use, pp. 13–34.
KUL Publishers, 2010.

[10] R. Tadeusiewicz, “Using neural networks for simplified discovery of so-
me psychological phenomena,” in Artificial Intelligence and Soft Computing
(e. L. Rutkowski et al., ed.), vol. 6114 of Lecture Notes in Artificial Intelligen-
ce, pp. 104–123, Springer-Verlag, Berlin – Heidelberg – New York, New York
2010.

[11] R. Tadeusiewicz, “Computers in psychology and psychology in computer
science,” in Proceedings of the 2010 International Conference on Compu-
ter Information Systems and Industrial Management Applications (CISIM)
With Applications to Ambient Intelligence and Ubiquitous Systems (V. S. e.
A. Abraham, K. Saeed, ed.), pp. 34–38, IEEE, 2010.

138 Bibliografia

[12] R. Tadeusiewicz, Prace Komisji Nauk Technicznych PAN, Tom III, ch. Cyber-
netic modeling and computer simulation of biological systems [In Polish: Mo-
delowanie cybernetyczne i symulacja komputerowa systemów biologicznych],
pp. 109–118. Polish Academy of Sciences Publishers, 2009.

[13] R. Tadeusiewicz, Inżynieria Biomedyczna, ch. Models of biological systems
and their application [In Polish: Modele systemów biologicznych i ich zasto-
sowania], pp. 191–193. Kraków UWND, 2008.

[14] R. Tadeusiewicz, Problemy Biocybernetyki i Inżynierii Biomedycznej, Tom 5,
ch. Cybernetic modeling of the parts of neural system involved in moving con-
trol process [In Polish: Cybernetyczne modelowanie fragmentów systemu ner-
wowego zaangażowanych w procesie sterowania ruchem], pp. 125–136. WKiŁ,
Warszawa 1990.

[15] E. Mikołajewska and D. Mikołajewski, “Implikacje neuroplastyczności mózgu
na modelowanie procesów umysłowych człowieka,” Kognitywistyka i Media w
Edukacji, no. 2, pp. 199–207, 2010.

[16] E. Mikołajewska and D. Mikołajewski, “Role of brainstem within human body
systems – computational approach,” Journal of Health Sciences, vol. 1, no. 2,
pp. 95–106, 2012.

[17] E. Mikołajewska and D. Mikołajewski, “Consciousness disorders as the possi-
ble effect of brainstem activity failure – computational approach,” Journal of
Health Sciences, vol. 2, no. 2, pp. 7–18, 2012.

[18] W. Duch, W. Nowak, J. Meller, G. Osinski, K. Dobosz, D. Mikolajewski, and
G. M. Wójcik, “Consciousness and attention in autism spectrum disorders,”
in Proceedings of Cracow Grid Workshop 2010, pp. 202–211, 2011.

[19] J. Bower and D. Beeman, The Book of Genesis – Exploring Realistic Neural
Models with GEneral NEural SImulation System. Springer, 1998.

[20] G. M. Wójcik, Obliczenia płynowe w modelowaniu mózgu. Warszawa: Akade-
micka Oficyna Wydawnicza Exit, 2011.

[21] S. Greenfield, Tajemnice mózgu. Warszawa: Diogenes, 1998.
[22] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane
current and its application to conduction and excitation in nerve,” Journal of
Physiology, vol. 117, pp. 500–544, 1952.

[23] W. A. Kamiński, Neurocybernetyka teoretyczna pod redakcją naukową Ry-
szarda Tadeusieiwcza, ch. Modelowanie pojedynczych komórek nerwowych,
pp. 75–86. Wydawnictwo Uniwersytetu Warszawskiego, 2010.

[24] R. Tadeusiewicz, Sieci neuronowe. Warszawa: Akademicka Oficyna Wydaw-
nicza RM, 1993.

[25] G. M. Wójcik and S. Kotyra, Środowisko programisty. Lublin: Instytut Infor-
matyki UMCS, 2011.

[26] “Mpich 2.” http://www.mcs.anl.gov/research/projects/mpich2/, grudzień
2010.

[27] “General neural simulation system.” http://genesis-sim.org/, December 2010.
[28] G. M. Wojcik, “Self-organising criticality in the simulated models of the rat
cortical microcircuits,” Neurocomputing, no. 79, pp. 61–67, 2012.

[29] G. M. Wojcik, “Electrical parameters influence on the dynamics of the
hodgkin-huxley liquid state machine,” Neurocomputing, no. 79, pp. 68–78,
2012.

Bibliografia 139

[30] G. M. Wojcik and W. A. Kaminski, “Self-organised criticality as a function
of connections’ number in the model of the rat somatosensory cortex,” in
Computational Science – ICCS 2008, vol. 5101 of Lecture Notes in Computer
Science, pp. 620–629, Springer, 2008.

[31] G. M. Wojcik and W. A. Kaminski, “Nonlinear behaviour in mpi-parallelised
model of the rat somatosensory cortex,” Informatica, vol. 19, no. 3,
pp. 461–470, 2008.

[32] G. M. Wojcik, W. A. Kaminski, and P. Matejanka, “Self-organised criticality
in a model of the rat somatosensory cortex,” in Parallel Computing Technolo-
gies, vol. 4671 of Lecture Notes in Computer Science, pp. 468–475, Springer,
2007.

[33] G. M. Wojcik and W. A. Kaminski, “Liquid state machine and its separation
ability as function of electrical parameters of cell,” Neurocomputing, vol. 70,
no. 13–15, pp. 2593–2697, 2007.

[34] G. M. Wojcik and W. A. Kaminski, “Liquid computations and large simu-
lations of the mammalian visual cortex,” in Computational Science – ICCS
2006, vol. 3992 of Lecture Notes in Computer Science, pp. 94–101, Springer,
2006.

[35] G. M. Wojcik and W. A. Kaminski, “Large scalable simulations of mammalian
visual cortex,” in Parallel Processing and Applied Mathematics, vol. 3911 of
Lecture Notes in Computer Science, pp. 399–405, Springer, 2005.

[36] “Clusterix – krajowy klaster linuksowy.” http://www.clusterix.pcz.pl/, gru-
dzień 2010.

	Wstęp
	Modelowanie komórek nerwowych
	Wprowadzenie
	Neuron biologiczny
	Rodzaje komórek nerwowych
	Model Hodgkina–Huxleya
	Podsumowanie
	Zadania
	Zadanie 1

	Instalacja i konfiguracja GENESIS
	Wprowadzenie
	Przygotowanie do instalacji
	Instalacja dodatków
	Edycja Makefile
	Kompilacja i instalacja
	Czynności poinstalacyjne
	Sprawdzenie instalacji
	Podsumowanie
	Zadania
	Zadanie 1
	Zadanie 2

	Podstawy języka skryptowego GENESIS
	Wprowadzenie
	Program ,,Hello World"
	Deklaracje zmiennych
	Operatory i wyrażenia
	Instrukcja warunkowa
	Funkcje
	Pętla for
	Inne ważne polecenia
	Podsumowanie
	Zadania
	Zadanie 1
	Zadanie 2
	Zadanie 3
	Zadanie 4
	Zadanie 5
	Zadanie 6

	Interfejs graficzny XODUS – podstawy
	Wprowadzenie
	Praca z komórką – Neuron.g
	Doświadczenia na kałamarnicy – Squid.g
	Mechanizm uczenia – Hebb.g
	Podsumowanie
	Zadania
	Zadanie 1
	Zadanie 2
	Zadanie 3

	Modelowanie pojedynczej komórki nerwowej
	Wprowadzenie
	Modelowanie ciała komórki
	Wprowadzenie zegarów i jednostek SI
	Wprowadzenie kanałów jonowych
	Automatyzacja modelowania komórek
	Zapis czasu powstawania piku
	Podsumowanie
	Zadania
	Zadanie 1
	Zadanie 2
	Zadanie 3

	Modelowanie prostych sieci neuronowych w GENESIS
	Wprowadzenie
	Tworzenie synaps
	Generator losowych pobudzeń
	Sieć zbudowana z dwóch komórek
	Sieć dwuwymiarowa I
	Sieć trójwymiarowa I
	Alternatywny sposób tworzenia sieci 2D
	Podsumowanie
	Zadania
	Zadanie 1
	Zadanie 2
	Zadanie 3
	Zadanie 4

	Wizualizacja aktywności sieci
	Wprowadzenie
	Przykładowa sieć
	Wizualizacja
	Podsumowanie
	Zadania
	Zadanie 1
	Zadanie 2
	Zadanie 3

	Instalacja i konfiguracja PGENESIS
	Wprowadzenie
	Instalacja zależności
	Instalacja MPICH2
	Edycja Makefile
	Kompilacja i instalacja
	Czynności poinstalacyjne
	Testowanie instalacji
	Podsumowanie
	Zadania
	Zadanie 1
	Zadanie 2
	Zadanie 3

	Symulacje równoległe w PGENESIS
	Wprowadzenie
	Dwa neurony
	Przykładowa sieć rozległa
	Kontrola symulacji
	Podsumowanie
	Zadania
	Zadanie 1
	Zadanie 2
	Zadanie 3

	Dostosowywanie GENESIS
	Wprowadzenie
	Prawdopodobieństwo egzocytozy
	Edycja plików źródłowych
	Konsekwencje
	Podsumowanie
	Zadania
	Zadanie 1
	Zadanie 2

	Uwagi końcowe
	Ważniejsze modele autora
	Model kory baryłkowej szczura
	Model kory wzrokowej zawierającej maszyny LSM

	Rezultaty i publikacje autora
	Ważniejsze rezultaty
	Streszczenia artykułów
	G. M. Wojcik, “Self-organising criticality in the simulated models of the rat cortical microcircuits,” Neurocomputing, no. 79, pp. 61–67, 2012.
	G. M. Wojcik, “Electrical parameters influence on the dynamics of the hodgkin-huxley liquid state machine,” Neurocomputing, no. 79, pp. 68– 78, 2012.
	G. M. Wojcik and W. A. Kaminski, “Self-organised criticality as a function of connections’ number in the model of the rat somatosensory cortex,” in Computational Science – ICCS 2008, vol. 5101 of Lecture Notes in Computer Science, pp. 620–629, Springer, 2008.
	G. M. Wojcik and W. A. Kaminski, “Nonlinear behaviour in mpi- parallelised model of the rat somatosensory cortex,” Informatica, vol. 19, no. 3, pp. 461–470, 2008.
	G. M. Wojcik, W. A. Kaminski, and P. Matejanka, “Self-organised criticality in a model of the rat somatosensory cortex,” in Parallel Computing Technologies, vol. 4671 of Lecture Notes in Computer Science, pp. 468–475, Springer, 2007.
	G. M. Wojcik and W. A. Kaminski, “Liquid state machine and its separation ability as function of electrical parameters of cell,” Neurocomputing, vol. 70, no. 13–15, pp. 2593–2697, 2007.
	G. M. Wojcik and W. A. Kaminski, “Liquid computations and large simulations of the mammalian visual cortex,” in Computational Science – ICCS 2006, vol. 3992 of Lecture Notes in Computer Science, pp. 94–101, Springer, 2006.
	G. M. Wojcik and W. A. Kaminski, “Large scalable simulations of mammalian visual cortex,” in Parallel Processing and Applied Mathematics, vol. 3911 of Lecture Notes in Computer Science, pp. 399– 405, Springer, 2005.

	Zdjęcia pamiątkowe
	Spis rysunków
	Bibliografia

