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WSTEP

W ciagu kilku dekad czyli od momentu kiedy komputery stalty sie po-
wszechne w uprawianiu nauki — modelowanie i symulacja komputerowa sta-
ly sie jednymi z gtéwnych narzedzi i metod badawczych wykorzystywanych
we wszystkich niemal dyscyplinach eksperymentalnych. W szczegdlnosci du-
ze znaczenie ma prowadzenie eksperymentéw in computo w naukach biolo-
gicznych. Czesto z powoddéw technologicznych, finansowych a nawet etycz-
nych zdecydowanie tatwiej i taniej jest podglada¢ zjawiska i zachowania
w modelu niz w zywym organizmie.

Ostatnie lata to réwniez czas burzliwego rozwoju neuronauk, w tym neu-
ronauki obliczeniowej zwanej neurocybernetyka [I 2]. Od dawna bowiem
istnialy pokusy modelowania skomplikowanych uktadéw biologicznych, jed-
nak dopiero komputery daly badaczom mozliwos¢ urzeczywistnienia ma-
rzen. Tak tez neurocybernetyka stata sie nauka wkraczajaca na pola innych
dyscyplin, takich jak psychologia, sztuczna inteligencja, medycyna [3], bio-
logia, systemy ekspertowe, nowe metody obliczeniowe, neurologia i wiele
innych [, 5, 6, 7, B, ©, 10, [L1].

Do najbardziej skomplikowanych symulacji biologicznych naleza bada-
nia zagadnien zwigzanych z funkcjonowaniem mozgu lub wybranych jego
fragmentéw [12) [13] [14], 15], B), [16] 17, [18]. W przypadku czlowieka, mozg za-
wierajacy sto miliardéw komorek nerwowych, z ktorych kazda jest potaczona
$rednio z tysigcami innych stanowi najbardziej skomplikowany uktad w zna-
nym Wszechéwiecie. Dlatego modelowanie i symulacja tego typu obiektow
stanowia nie lada wyzwanie.

Przedstawiono tu kurs programowania w srodowisku GENESIS bedacym
obecnie jednym z najlepszych narzedzi modelowania realistycznych biolo-
gicznie komérek nerwowych [19]. Ksiazka przeznaczona jest dla studentéow
specjalnosci neuroinformatycznych i pokrewnych. Stanowi tez wprowadze-
nie do modelowania struktur biologicznych dla doktorantéw podejmujacych
problematyke neuronauki obliczeniowej. Wraz z pakietem GENESIS dostar-
czany jest anglojezyczny podrecznik , The Book of GENESIS” [19], ktory
ze jednak wzgledu na wysoki poziom zaawansowania moze stanowi¢ od-
straszajaca bariere dla informatykéw pragnacych od podstaw drazyé¢ pro-
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blematyke biologii obliczeniowej. Dlatego niniejszy skrypt powinien stano-
wié¢ material przygotowawczy dla przysztych neurocybernetykow i tagodnie
wprowadzi¢ ich w tematyke zagadnienia.

W pierwszym rozdziale oméwiono idee modelowania neuronéw biologicz-
nych.

Rozdzial drugi prowadzi czytelnika przez skomplikowany proces kompi-
lacji ze zrédet oraz instalacji sSrodowiska GENESIS w systemie operacyjnym
Ubuntu Linux.

W trzecim rozdziale omdéwiono podstawy jezyka skryptowego GENESIS,
podstawowe polecenia powloki i strukture jezyka.

Rozdzial czwarty przedstawia podstawy srodowiska graficznego XODUS.

W piatym rozdziale zaprezentowano na prostych przyktadach modelo-
wanie pojedynczych komoérek nerwowych, w széstym za$ — prostych sieci
neuronowych.

Rozdziat si6dmy omawia prosta metode wizualizacji symulowanych sieci
z wykorzystaniem bibliotek XODUS.

W rozdziale ésmym omdwiono proces kompilacji wersji réwnoleglej —
PGENESIS - symulatora na komputerze wielordzeniowym.

W rozdziale 6smym zaprezentowano metody rownoleglizacji duzych sieci
neuronowych w PGENESIS.

Rozdziat dziesiaty prezentuje sposoby modyfikowania kodu zrédtowego
GENESIS w celu uzyskiwania nowych funkcjonalnosci.

Na konicu skryptu znajduja sie dodatki, w ktérych opisano podstawowe
modele, nad ktéorymi w ostatnich latach autor prowadzit swoje badania.
Zamieszczono rowniez streszczenia najwazniejszych artykuléw opublikowa-
nych jako rezultat tych badan (Dodatek A). Ze wzgledu na uzywana termi-
nologie zdecydowano sie na zamieszczenie streszczen w jezyku angielskim.
Pozwoli to tym czytelnikom, ktérzy zdecyduja sie na kontynuowanie tych
lub podobnych badan na zapoznanie sie z powszechnym w literaturze an-
glojezycznej 1 zwiazanym z tematem neuroobliczen stownictwem (Dodatek
B). W Dodatku C zamieszczono zdjecia, ktére z wazniejszych lub mniej
waznych powodéw maja dla autora istotne znaczenie.
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1. Modelowanie komérek nerwowych

1.1. Wprowadzenie

W tym rozdziale przedstawimy biologiczne podstawy zwigzane z budo-
wa neuronéw. Minimum wiedzy z zakresu biologii i neurofizjologii uktadu
nerwowego jest niezbedne do zrozumienia dalszych rozdzialéw skryptu. Opi-
szemy zasade dzialania pojedynczego neuronu, rodzaje komérek nerwowych
oraz model Hodgkina—Huxleya, wedlug ktérego projektowane sg numerycz-
ne modele neurondéw oraz sieci neuronowych.

1.2. Neuron biologiczny

Tkanka nerwowa u ssakoéw, w tym u naczelnych rozsiana jest w calym
ciele, jednak najwieksza jej czes¢ znajduje si¢ w jamie czaszki (mézgowie)
i w kanale kregowym (rdzen kregowy) tworzac o$rodkowy uklad nerwowy.
Pozostata tkanka tworzy obwodowy uklad nerwowy.

Podstawowym elementem budujacym uklad nerwowy jest neuron czyli
komérka nerwowa H Budowe typowego neuronu przedstawiono na Rys.
[20]. W duzym skrécie zasade dzialania neuronu mozna przedstawi¢ w bar-
dzo schematyczny i powtarzalny sposéb. Najwazniejsza czescig neuronu jest
ciatlo komérki (soma), w ktérym znajduje si¢ jadro komoérkowe i inne we-
wnatrzkomérkowe struktury. Poshugujac sie terminologia komputerows, ja-
dro komoérki mozemy przyréownaé do procesora sterujacego pracg neuronu
[20].

Do ciata komérki wchodza dendryty (od kilku do kilkunastu tysiecy, nie-
kiedy przypominajace drzewiaste struktury — stad wywodzi sie czesto spoty-
kana nazwa drzewo dendrytyczne). Dendryty stanowia wejscia do neuronu.
To do nich dochodza sygnaly od innych neuronéw, ktére analizowane przez
jadro decyduja o elektrycznym zachowaniu komoérki. Skupiska cial neuronéw
nazywane sa istota szara (ang. gray matter) stad potoczna nazwa - ,szare
komoérki” [20].

7 kolei z ciala neuronu wychodzi akson, przewdd przypominajacy swoja
zasadg dziatania drut. Jezeli w pewnych okolicznosciach sygnat naptywaja-
cy przez dendryty do ciata komorki jest wystarczajaco silny to we wzgdrku
aksonu wywolywane zostaje zaburzenie prowadzace do powstania tak zwa-
nego piku potencjalu czynnosciowego. Zmieniajacy sie potencjal przepltywa
wzdluz aksonu (z predkoscia od 4 do 120 m/s u ludzi — dzigki otoczce mieli-
nowej wokoét aksonu, u bardziej prymitywnych zwierzat bez otoczki mielino-

! Opis neuronu biologicznego oraz fragmenty opisu modelu Hodgkina-Huxleya za-
czerpnieto z monografii autora zatytulowanej ,,Obliczenia ptynowe w modelowaniu mo-
zgu” [20]. W tym miejscu autor pragnie ztozy¢ serdeczne podziekowania Panu Andrzejowi
Langowi z Akademickiej Oficyny Wydawniczej Exit za wyrazenie zgody na przytoczenie
niniejszego opisu.



1.2. Neuron biologiczny

Dendryty

Jadro komorki
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Otoczka mielinowa

Kolbki synaptyczne

!

Rysunek 1.1. Schemat neuronu biologicznego (za: [20])



1. Modelowanie komérek nerwowych

wej od 0,5 do 4 m/s) dochodzac do czesto wielokrotnie rozgaltezionego konca,
ktéry moze byé potaczony za posrednictwem synaps z dendrytami innych
neuronéw. Najdluzsze aksony u czlowieka maja péttora metra dlugosei (cia-
gna sie np. od koncéw palcéw do kregostupa, a dzigki temu zZe nie tracimy
czasu na potaczeniach z innymi komérkami — mozemy stosunkowo szybko
cofngé reke w chwili oparzenia), jedne z najgrubszych (ok. 1 mm $rednicy,
mozna z tatwoscia wbi¢ w taki neuron elektrody i badaé przeplyw pradu)
posiada kalamarnica olbrzymia (ang. Giant Squid, tac. Giant loligo), dzieki
czemu udalo sie stworzy¢ empirycznie doskonaly, opisywane w nastepnej
sekcji model dynamiki elektrycznej neuronu [20].

Sam przeplyw potencjatu wzdluz widékna aksonu utrzymywany jest przez
dziatanie tak zwanych pomp jonowych, ktére w sprytny sposob zarzadzaja
przepychaniem dodatnich jonéw sodu i potasu oraz ujemnych jonéw chlo-
ru w obrebie neuronu i jego otoczenia. Istota biala (ang. white matter)
zbudowana jest z aksonéw. Istota szara jest wiec oSrodkiem przetwarzania
informacji, istota biala stanowi jedynie drogi nerwowe [20].

Mechanizm potaczenia komérek nerwowych zwiazany jest z bardzo skom-
plikowanym procesem neurochemicznym polegajacym na przesylaniu rézne-
go rodzaju neuroprzekaznikéw pomiedzy kolbkami synaptycznymi tak zwa-
nego neuronu presynaptycznego i postsynaptycznego. Upraszczajac nieco
sprawe mozemy przyjaé, ze nie kazdy neuroprzekaznik pasuje do kazdej
kolbki synaptycznej, podobnie jak nie kazdy klucz pasuje do kazdego zamka.
Pewne neuroprzekazniki powoduja wzmocnienie sygnalu (potrzeba wtedy
mniej neuroprzekaznika do wywotania reakcji we wzgérku aksonu neuro-
nu docelowego), inne z kolei maja charakter hamujacy, jeszcze inne (takie
jak dostarczane do organizmu przez narkotyki) — przez analogie — wywa-
zaja drzwi rozrywajac zamki. Wiele namacalnych wrecz zachowan takich
jak uczucie pobudzenia ,po kawie”, ospalosé, stan zakochania, upojenia
alkoholowego lub narkotycznego w duzym stopniu mozna wyjaéni¢ na dro-
dze analizy wzajemnego oddzialywania neuronéw i wydzielanych przez nie
neuroprzekaznikéw [20].

1.3. Rodzaje komoérek nerwowych

W réznych partiach mézgu, a w szczegolnosci w korze mdzgowej, znajdu-
ja sie komérki o zréznicowanej budowie, a co za tym idzie odmiennych funk-
cjach i wlasciwosciach. Czesto réznice fizjologiczne komérek nalezy uwzgled-
niaé¢ przy budowie modelu. Istnieje wiele modeli neuronu. Jednym z najwaz-
niejszych jest prosty model neuronu progowego uwzgledniajacy podstawowe
cechy komoérek. Bardziej ztozony model Hodgkina-Huxleya znajduje zasto-
sowanie w wiernych symulacjach nasladowczych neuronéw.



1.3. Rodzaje komorek nerwowych

Najprostszy pod wzgledem formy jest neuron unipolarny, czyli jednobie-
gunowy (Rys. . Wystepuje gtéwnie w drogach czuciowych. Jego ciato
w zasadzie nie bierze udzialu w przewodzeniu sygnatéw. Neurony unipolar-
ne charakteryzuja sie tym, ze jedna wypustka dzieli si¢ na jeden dendryt
i jeden akson. Neuron bipolarny (dwubiegunowy) (Rys. odbiera sygna-
ly od innych komérek za posrednictwem wielu dendrytow. W odpowiedzi
na sygnal wejéciowy neuron dwubiegunowy wysyla pojedyncza odpowiedz
wzdhiz swojego aksonu. W korze mézgowej najwiecej jest neurondéw pira-
midalnych (Rys. [1.4]). Ich dendryty sa zgrupowane w dwéch oddzielnych
peczkach, a akson moze dawaé odgatezienia wsteczne do dendrytéw. Neu-
rony Golgiego (Rys. [L.5)) wystepuja w moézdzku i sa odpowiedzialne za ko-
ordynacje ruchdéw. Stanowia jedna z najbardziej skomplikowanych struktur
jaka moga stworzy¢ dendryty i rozgaleziony akson. Neurony gwiazdziste
(Rys. z kory mozgowej sa wyposazone w wypustki tworzace kulista
forme przestrzenna. Ich rola w korze polega na przetwarzaniu i wysytaniu
danych do pobliskich neuronéw. W siatkdwce oka istnieja komérki amokry-
nowe (Rys. . Nie posiadaja aksonéw. Przekazywane przez nie informacje
maja postaé¢ niewielkich zmian napiecia btony komoérkowej. Neurony kle-
buszkowe (Rys. sa komoérkami opuszki wechowej lezacymi tuz nad jama
nosowg. Neurony Purkinjego (Rys. , jedne z najwiekszych i najbardziej
skomplikowanych komorek nerwowych, sa polozone w zewnetrznej warstwie
mozdzku, a ich aksony w jego glebi.

ol §\ e
e — N‘héi'_‘.'_ 5
L L

Rysunek 1.2. Neuron unipolarny (jednobiegunowy) (za: [21])

Przedstawiony podzial komérek zostal przeprowadzony w oparciu o ich
ksztalt i ztozonosé. Istnieje jednak wiele innych podzialéw neurondéw, np.
ze wzgledu na ich funkcje, wladciwosci fizykochemiczne czy potaczenia ja-
kie tworzg z innymi komoérkami. Nie bedziemy szczegélowo przedstawiad
tej systematyki. Jedng z najwazniejszych cech prawie wszystkich komoérek
jest zdolnos¢ tworzenia tzw. mikroobwoddéw. Potwierdzenie m.in. przez gru-
pe Markrama istnienia takich struktur w korach prymitywnych ssakéw jest
najwiekszym wydarzeniem w neurofizjologii w ostatnich latach. Okazuje sie,
ze komorki gromadzg sie w grupach tworzac obwody zdolne do wykonywania
pewnych obliczen. Chociaz budowa poszczegdlnych obwoddw jest zblizona,
to funkcja, ktora pelnia, jest rézna w zaleznodci od miejsca wystepowa-
nia. Tak wiec w poszczegélnych polach kory wzrokowej znajduja sie prawie
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Rysunek 1.3. Neuron bipolarny (dwubiegunowy) (za: [21])

Rysunek 1.4. Neuron piramidalny (za: [21])



1.3. Rodzaje komorek nerwowych

Rysunek 1.5. Neuron Golgiego (za: [21])

Rysunek 1.6. Neuron gwiazdzisty (za: [21])

Rysunek 1.7. Komoérka amokrynowa (za: [21])
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Rysunek 1.8. Neuron klebuszkowy (za: [21])

Rysunek 1.9. Neuron Purkinjego (za: [21])



1.4. Model Hodgkina—Huxleya

identyczne mikroobwody zawierajace nawet do kilku tysiecy komérek, ale
zadania jakie wykonuja sa catkiem odmienne.

1.4. Model Hodgkina—Huxleya

Przy tworzeniu modelu rzeczywistej komorki nerwowej jedna z podsta-
wowych trudnosci na jakie napotykamy jest konieczno$¢ uwzglednienia zto-
zonosci fizjologicznej neuronu. Procesy przebiegajace w kanatach jonowych
wlékien nerwowych mozna opisa¢ metodami fizyko-matematycznymi. Re-
guta w tworzeniu modeli jest dokonywanie podzialu wldkien nerwowych
komoérek na mniejsze, bardziej elementarne czesci sktadowe i opisywanie
kazdej z nich odpowiednimi réwnaniami. Rozwiazujac uklady réwnan dla
poszczegdlnych czesci sktadowych komorki, mozna skutecznie modelowaé
zachowanie kazdego z wyodrebnionych elementow, jak réwniez ich wzajemne
oddziatywanie. Dzieki temu uzyskujemy doktadniejszy obraz symulowanego
neuronu. Model nasladujacy rzeczywiste zachowania neuronu biologicznego
zostal opisany przez Hodgkina i Huxleya w 1952 r. i uhonorowany nagroda
Nobla w dziedzinie medycyny w 1963 r. W modelu tym przyjeto, iz kazdy
matly element neuronu mozna opisaé¢ przez ekwiwalentny obwod elektryczny.
Fizyczne zachowanie takiego obwodu odpowiada omawianym juz procesom
zachodzacym w fragmentach rzeczywistych komoérek. Formalnie obwéd opi-
suje nieliniowe réwnanie rézniczkowe. Takie podejscie pozwala symulowaé
nawet bardzo skomplikowane neurony. Istnieja modele pojedynczych komo-
rek nerwowych, opisywane uktadem kilkudziesieciu tysiecy réwnan réznicz-
kowych [22], 23].

Badajac neurony katamarnicy olbrzymiej Hodgkin i Huxley stworzyli
teorie opisujaca zachowania poszczegdlnych kanaldow jonowych, potaczen sy-
naptycznych i oddzialywan pomiedzy poszczegdlnymi, sasiadujacymi ze so-
ba fragmentami wlékien nerwowych (np. aksonéw), a takze podali przedzia-
ly parametréw elektrycznych, dla ktérych model jest najblizszy rzeczywisto-
sci. Kryterium podziatu neuronu na fragmenty powinno by¢ to, czy w ekwi-
walentnych obwodach RC potencjal jest w przyblizeniu staty. Ponadto opér
miedzy poszczegdlnymi obwodami powinien by¢ tak dobrany, aby zachowaé
maksymalne podobienstwo do topologii dendrytéw. Przyktadowy podziat
komorki nerwowej i jej reprezentacje obwodem RC przedstawia rys. [1.10
[19, 22| 23]. Typowy obwdd elektryczny odpowiadajacy fragmentowi wlék-
na neuronowego przedstawia rys[I.11] V;,, reprezentuje warto$¢ potencjalu
btony komoérkowejl. Uziemienie odpowiada zewnetrznemu punktowi o ze-
rowym potencjale. Wprowadzenie kondensatora o pojemnoéci C, jest nie-
zbedne do modelowania zdysocjowanych roztworow przeptywajacych przez
wildkna komorki. W modelu procesowi przeptywu jonéw odpowiada tado-
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Rysunek 1.10. Model komérki nerwowej oraz schemat jej podzialu na elementy
sktadowe (za: [19])
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Rysunek 1.11. Element skladowy neuronu jako obwdd elektryczny. (za: [19])
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wanie i roztadowywanie kondensatora. Jezeli potencjaly V,! i V. sa rézne,
to kondensator roztadowuje sie przez opor R,. Moze tez nastapi¢ przepltyw
pradu przez opér R.,. Rezystor G o zmiennej opornosci reprezentuje jed-
ng z wielu mozliwych przewodnosci kanatéw jonowych. Przewodnosci te
sg specyficzne dla poszczegdlnych kombinacji jonow i neuronéw. Wewnatrz
i na zewnatrz komérki panujg rézne koncentracje jonéw. Wywotane réznica
koncentracji ciénienie osmotyczne powoduje, ze jony dyfundujg wzdtuz gra-
dientu koncentracji. W obwodzie elektrycznym zjawisko to jest modelowane
dzieki wprowadzeniu zrédta pradu FEji. Potencjal, przy ktérym przeplyw
pradu jest zatrzymany nazywa sie potencjalem réwnowagowym FEy. Jezeli
nie ma zadnego impulsu wchodzacego do komoérki, to znaczy ze komor-
ka nie ma polaczen z innymi neuronami. Wéwczas posiada ona tak zwany
potencjat spoczynkowy Fies:, ktéry w naszym obwodzie wynosi V,,. Opér
btony komorkowej na rys. [1.11]| oznaczono jako R,, . Opér ten w polaczeniu
ze zrédtem pradu FE,, odpowiada za utrzymanie zerowego potencjatu w ka-
natach jonowych. 7 kolei I, e+ reprezentuje natezenie pradu podawanego
z zewnatrz, ktéry moze pochodzi¢ na przyktad od elektrody umieszczonej
w ciele komorki [22] 23].

Zgodnie z prawem Kirchhoffa potencjal Vm spetnia nieliniowe réwnanie
rézniczkowe [20]:

dVim

Sumowanie odbywa si¢ po wszystkich rodzajach kanaléw jonowych wystepu-
jacych w modelu. Dynamike kanatu uptywowego reguluje niezalezna od na-
piecia przewodno$é. Przewodnosé pozostatych kanaléw zalezy od napiecia
i zmienia sie w czasie. Przy otwartym kanale mamy do czynienia z mak-
symalnym mozliwym przewodzeniem pradu gy, i gx. Zazwyczaj jednak
czed¢ kanatéw jest zablokowana, a prawdopodobienstwo zablokowania opi-
suja dodatkowe zmienne m, n — dla kanatéw sodowych, oraz h — dla kanatéw
potasowych. Wykorzystujac te zmienne, mozna wyznaczy¢ sumaryczny prad
jonowy wystepujacy w konkretnym obwodzie i zalezno$é przeksztatcié
w gléwne réwnanie Hodgkina—Huxleya [20]:

C Vi _ [GNam>h(Vyy — Enag)

"dt
+ GKn4(Vm — Ex)+ Gr(Vin — Ep)] + Linj.(1). (1.2)
Nieznane funkcje m, n i h regulujace otwieranie kanatéw jonowych mozna

dopasowaé w taki sposéb, by odpowiadaly danym doswiadczalnym [20]:

dm

E = am(vm)(l - m) - Bm(vm)ma (1'3)



12

1. Modelowanie komérek nerwowych

dn

= = (Vi) (1 =) = Bu(Vin)n, (1.4)
O = on (V) (1= h) — Bu (Vi) (15)

Funkcje wykladnicze opisujace zachowanie o i § wyznaczono empirycznie

120];
0,01(Vp, + 55)

(Vi) = T exp(— Vi + 55)/10]" (1.6)
C0,1(Vy 4 40)

(Vi) = 5 v+ 20)/10)] (L7)

an(Vin) = 0,07exp [ — (Vi + 65)/20)], (1.8)

ﬂn(vm) =0,125exp [ — (Vm + 65)/80], (1.9)

B (Vin) = dexp [ — (V5 + 65)/18], (1.10)

Br(Vin) . (1.11)

T 1texp[— (Vi +35)/10]

State wystepujace we wzorach pobrano bezposrednio z neuronéw katamar-
nicy olbrzymiej. W temperaturze 280 K przyjmuja one wartosci [20]:

GNe=120 mS/cm?, Gx=36 mS/cm?, G1=0,3 mS/cm?, En,=50 mV,
Ex=-TTmV, Ep=-54 mV, C,,=1 uF/cm? [19, 22, 23].

Uktady réwnan typu [1.2H1.11] mozna rozwiazywaé tylko numerycznie.
Nalezy pamietaé, ze réwnania 1.11] opisuja zachowanie tylko jednego,
wyodrebnionego fragmentu neuronu. Uktady réwnan modelujace cata ko-
morke stanowia wiec opis wzajemnego oddzialywania sasiadujacych ze soba
fragmentow. Podobne réwnania Hodgkina—Huxleya z empirycznie wyzna-
czonymi parametrami odwzorowuja dzialanie kazdej synapsy i stosuje sie je
podczas konstruowania modeli zawierajacych wiecej niz jedna komérke. Sto-
pien komplikacji rownan sprawia, ze model Hodgkina—Huxleya jest bardzo
kosztowny obliczeniowo [23].

Mimo, ze zachowania grup elementéw mikroskopowych takich jak kanaty
jonowe lub neurotransmitery sa opisywane przy pomocy wielko$ci makrosko-
powych (opér elektryczny, przewodno$é), to rezultaty sa bardzo bliskie rze-
czywistosci. Swiadezy to o wyjatkowej uzytecznosci modelu, a w wielu pro-
wadzonych obecnie badaniach wciaz korzysta sie z prac Hodgkina—Huxleya
datowanych na lata pieédziesiate ubieglego stulecia [20].

Przyktadem modelowania pojedynczych, bardzo ztozonych komérek, sa
prace prowadzone przez grupe Erika De Schuttera. Symulowano w nich poje-
dyncza komorke Purkinjego (rys. 2.15). Drzewo dendrytéw w modelowanej
komoérce zawiera kilkadziesiat tysiecy elementéw i wypustek. Elementy te
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oddziatujg elektrycznie miedzy soba. Przestrzenna mapa roztozenia poten-
cjatow w symulowanej strukturze przedstawia rys. Pojedyncza komor-
ka Purkinjego posiada pewne zdolnosci obliczeniowe. Impulsy potencjatu
podawane na wejscie takiej komorki ulegaja transformacji w drzewie jej den-
drytéw. Drzewo dendrytow posiada zdolnosci pamietania impulséw, ktére
wczedniej przezen przechodzity. Zdolnosci te mozna nastepnie poréwnywaé
ze zdolno$ciami klasyfikacyjnymi SSN [24].

Rysunek 1.12. Wizualizacja komérki Purkinjego z prac Erika De Schuttera [23]

1.5. Podsumowanie

Przedstawiono zasade dzialania neuronu biologicznego, podstawowe typy
komorek nerwowych i teorie Hodgkina—Huxleya jako najlepsza z zapropono-
wanych do tej pory, stosowana do tworzenia realistycznych biologicznie mo-
deli pojedynczych komoérek nerwowych i biologicznych sieci neuronowych.

1.6. Zadania

Zadanie 1

Narysuj schematycznie schemat neuronu i podstawowych typéw komo-
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rek nerwowych, a nastepnie zaproponuj ich podzial do stworzenia modelu
wedlug teorii Hodgkina—Huxleya.
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2. Instalacja i konfiguracja GENESIS

2.1. Wprowadzenie

Dla poczatkujacych uzytkownikéw systemu operacyjnego Linux instala-
cja i konfiguracja $rodowiska GENESIS moze sie okazaé zadaniem trudnym.
Celem niniejszego rozdziatu jest przeprowadzenie czytelnikéw przez proces
kompilacji i instalacji symulatora w typowych konfiguracjach. Systemem
operacyjnym, w ktérym zainstalujemy GENESIS bedzie Ubuntu 10.04 LTS.
Zdecydowano si¢ na majaca juz ponad rok wersje tej popularnej dystrybu-
cji ze wzgledu na dlugi czas wsparcia oferowany przez firme Canonical.
Niemniej jednak w nowszych wersjach Ubuntu opisywany proces kompilacji
i instalacji przebiega praktycznie rzecz ujmujac w identyczny sposéb.

2.2. Przygotowanie do instalacji

Najnowsza, stabilna wersje GENESIS oznaczono numerem 2.3. Od kilku
lat prowadzone sa prace nad zupelnie nowa pod wzgledem filozofii imple-
mentacji wersja srodowiska oznaczona 3.0, jednak péki co dostepne Zrodia
sg w fazie testowania i w czasie pisania niniejszego podrecznika nie dyspo-
nujemy jeszcze na przyktad mozliwodcia zrownoleglenia GENESIS w wycze-
kiwanej wersji trzeciej. Nowa wersja, wedlug zapowiedzi, powinna dziataé
znacznie szybciej i oferowaé nieco wiecej mozliwosci modelowania kompart-
mentowego (w tym Hodgkina—Huxleya). Jednak sktadnia polecen i zasady
budowania modeli wystepujace we wczesniejszych wersjach nie ulegna zmia-
nie.

Przed instalacja GENESIS 2.3 powinniSmy zaopatrzy¢ sie w jego zrédla.
Najlepiej bedzie pobraé¢ je ze strony symulatora znajdujacej sie pod ad-
resem http://sourceforge.net/projects/genesis-sim/. Domy$lnie pro-
ponowana jest kompilacja przygotowana dla systemu Mac OS X. My jed-
nak powinniSmy podazaé za taczem Other versions - Browse all files
i pobra¢ plik genesis-2.3-src.tar.gz z katalogu /Source/2.3 Final. Przy
okazji warto zdoby¢ plik z rownolegta wersja GENESIS. Nalezy wiec pobraé
archiwum pgenesis-2.3-src.tar.gz.

Proponujemy rozpakowa¢ oba pliki do katalogu domowego uzytkownika.
W naszym przypadku bedziemy postugiwaé si¢ katalogiem /home/studen-
t/. Po skopiowaniu obu archiwéw do katalogu domowego w konsoli systemu
wykonujemy nastepujace polecenia:

gunzip genesis-2.3-src.tar.gz
tar xvf genesis-2.3-src.tar
gunzip pgenesis-2.3-src.tar.gz
tar xvf pgenesis-2.3-src.tar
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Po wykonaniu przytoczonych tu polecen uzytkownik powinien mie¢ w ka-
talogu domowym rozpakowane zrédta zaréwno GENESIS w wersji szerego-
wej genesis-2.3/genesis/ jak i réwnoleglej genesis-2.3 /pgenesis/.

2.3. Instalacja dodatkow

W tym rozdziale bedziemy zajmowac sie tylko kompilacja klasycznej tj.
szeregowe] wersji symulatora.

Przed przystapieniem do pracy powinniSmy doinstalowaé¢ do systemu
niezbedne aplikacje i biblioteki. W przeciwnym przypadku proces kompilacji
zakonczy sie fiaskiem. Problemy zwiazane z niezgodnosScig wersji poszcze-
gélnych bibliotek w réznych dystrybucjach systeméw Linux/Unix sa naj-
czestszg przyczyna niepowodzen instalacji GENESIS. W przypadku Ubun-
tu sprawe da sie rozwiazaé¢ stosunkowo tatwo. Podobnie daje sie to uczynié
we wszelkich dystrybucjach wywodzacych sie z rodziny Debiana. Zatem nie-
zbedne dodatki instalujemy wykonujac w konsoli Linuksa polecenie:

sudo apt-get install bison flex libncursesb-dev libxt-dev

Jezeli instalacja niezbednych rozszerzen zakonczy sie pomyélnie — mozna
przystapi¢ do edycji pliku Makefile.

2.4. Edycja Makefile

W pliku Makefile definiujemy wszelkie niezbedne opcje kompilacji, cha-
rakterystyczne dla naszego systemu operacyjnego. Omawiany plik bedzie
znajdowal sie w katalogu genesis-2.3 /genesis/src/, do ktérego najpierw
powinnidmy sie dostaé, a nastepnie sam plik przygotowac. Zakladajac, ze
znajdujemy sie w katalogu domowym uzytkownika, wydajemy nastepujace
polecenia:

cd genesis-2.3/genesis/src

W katalogu tym znajduje si¢ miedzy innymi plik Makfile.dist, ktory ko-
piujemy do pliku o nazwie Makefile, a nastepnie edytujemy:

cp Makefile.dist Makefile
gedit Makefile

Do edycji pliku tekstowego mozemy uzy¢ dowolnego edytora zamiast do-
mys$lnego notatnika powloki Gnome. Czasami (na przyklad instalujac GE-
NESIS na zdalnym serwerze, ktéry nie oferuje srodowiska graficznego) je-
stedmy wrecz skazani na poshugiwanie sie edytorami pracujacymi w trybie
tekstowym, takimi jak emacs, vi, vim albo mcedit.
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Nalezy odkomentowaé sekcje odpowiadajaca systemowi operacyjnemu
Linux przez usuniecie znakéw # z poczatkow kazdej linii. Odpowiedni frag-
ment pliku Makefile powinien zatem wyglada¢ nastepujaco dla systemu
32-bitowego:

4~ ~ o~ o~ o~ o~~~ e~ e~ e e e e~ e~
# System: Linux 1.2.x and up on Intel x86-based, Xeon,

# and AMD 64-bit systems.

# Compiler: GCC

4~ ~ ~ v o~ o~ e~ e~ e~ e e e e~ e~

## 2000-05-23

## Termcap/ncurses issues: The shell library makes reference
## termcap library. Some Linux distributions have an ncurse
## which includes termcap emulation. GENESIS appears to wor
## properly with the ncurses supplied with Red Hat Linux 5.1
## and Debian Linux (glibc2.1, egcs-2.91.66). However, link
## ncurses is known to have resulted in core dumps in GENESI
## Linux versioms.

##

## If you encounter problems linking with the TERMCAP flags

## or the GENESIS command line interface does not work, try

## following alternatives:

##

## 1) TERMCAP = -ltermcap

##

## 2) (If you are using SuSE Linux)

## TERMCAP = /usr/lib/termcap/libtermcap.a

##

## 3) (If you are using Red Hat Linux prior to version 6.0)

## TERMCAP = /usr/lib/libtermcap.a

##

MACHINE=Linux
0S=BSD

XINCLUDE=-I/usr/X11R6/include

## Choose ONE XLIB line to uncomment:

## For 32-bit architectures

XLIB=/usr/X11R6/1ib

## For 64-bit machines, probably need /usr/X11R6/1ib64 here.
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# XLIB=/usr/X11R6/1ib64
CC=cc

## 01d (and probably broken) gcc installations may need the
## path to cpp (preferably NOT one in /1ib). If there isn’t
## [link to] cpp in the same directory as ’cc’, you should c
## [relinstalling a newer gcc.

CPP=cpp -P

## Choose ONE CFLAGS line to uncomment:

## For 32-bit architectures

CFLAGS=-02 -D__NO_MATH_INLINES

## For 64-bit architectures

# CFLAGS=-02 -D__NO_MATH_INLINES -DLONGWORDS

LD=1d

##H 11

## Don’t uncomment the next line unless you get errors about
## libraries not being found. Setting this path may interfer
## the default (probably correct) operation of the loader, b
## 64-bit architectures may need /usr/1ib64 here.

## LDFLAGS=-L/usr/lib

RANLIB=ranlib
AR=ar

YACC=bison -y

LEX=flex -1

LEXLIB=-1f1

## Some linuxes (Gentoo?) may require -1SM and -1ICE as well
LIBS= $(LEXLIB) -1lm

TERMCAP=-1ncurses
TERMOPT=-DTERMIO -DDONT_USE_SIGIO

## end Linux 1.2.x and up on Intel x86-based systems

W przypadku instalacji GENESIS w systemie 64-bitowym odpowiedni frag-
ment pliku Makefile wyglada nastepujaco:
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4~
# S
#

ystem: Linux 1.2.x and up on Intel x86-based, Xeon,
and AMD 64-bit systems.

# Compiler: GCC

4~

#H#
##
#Ht
##
##
##
##
##
##
##
##
#H#
##
#Ht
##
##
##
##
##
##
##

2000-05-23

Termcap/ncurses issues: The shell library makes reference
termcap library. Some Linux distributions have an ncurse
which includes termcap emulation. GENESIS appears to wor
properly with the ncurses supplied with Red Hat Linux 5.1
and Debian Linux (glibc2.1, egcs-2.91.66). However, link
ncurses is known to have resulted in core dumps in GENESI
Linux versionms.

If you encounter problems linking with the TERMCAP flags
or the GENESIS command line interface does not work, try
following alternatives:

1) TERMCAP = -ltermcap

2) (If you are using SuSE Linux)
TERMCAP = /usr/lib/termcap/libtermcap.a

3) (If you are using Red Hat Linux prior to version 6.0)
TERMCAP = /usr/lib/libtermcap.a

MACHINE=Linux
0S=BSD

XI

##
##

NCLUDE=-I/usr/X11R6/include

Choose ONE XLIB line to uncomment:
For 32-bit architectures

# XLIB=/usr/X11R6/1lib

##

For 64-bit machines, probably need /usr/X11R6/1ib64 here.

XLIB=/usr/X11R6/1ib64

CC=cc

#Ht

01d (and probably broken) gcc installations may need the
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## path to cpp (preferably NOT one in /1ib). If there isn’t
## [link to] cpp in the same directory as ’cc’, you should c
## [relinstalling a newer gcc.

CPP=cpp -P

## Choose ONE CFLAGS line to uncomment:
## For 32-bit architectures
# CFLAGS=-02 -D__NO_MATH_INLINES
## For 64-bit architectures
CFLAGS=-02 -D__NO_MATH_INLINES -DLONGWORDS

LD=1d

## 111

## Don’t uncomment the next line unless you get errors about
## libraries not being found. Setting this path may interfer
## the default (probably correct) operation of the loader, b
## 64-bit architectures may need /usr/1ib64 here.

## LDFLAGS=-L/usr/lib

RANLIB=ranlib
AR=ar

YACC=bison -y

LEX=flex -1

LEXLIB=-1f1

## Some linuxes (Gentoo?) may require -1SM and -1ICE as well
LIBS= $(LEXLIB) -1m

TERMCAP=-1ncurses
TERMOPT=-DTERMIO -DDONT_USE_SIGIO

## end Linux 1.2.x and up on Intel x86-based systems

W czynnosciach przedinstalacyjnych pozostata do zrobienia jeszcze jedna
wazna rzecz, bez ktorej proces kompilacji w Ubuntu 10.04 (ale i w now-
szych wersjach) zakonczy sie niepowodzeniem. Nalezy otworzy¢ plik gene-
sis/src/sim/sim_notes.c w dowolnym edytorze tekstu i zakomentowaé
linie 54. Przed wstawieniem komentarza linia 54 wyglada nastepujaco:

#include <unistd.h>
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Poniewaz plik sim_notes.c to w rzeczywistosci program napisany w jezyku
C++ — komentarz wstwaiamy przez dopisanie na poczatku linii podwéjnego
znaku //. Mozemy tez dopisaé¢ informacje o tym, kto wstawil komentarz,
zeby w przysztosci z tatwoscia odnalez¢é wprowadzone zmiany. Po dodaniu
komentarza linia 54. moze wygladac¢ tak:

//#include <unistd.h> //by gmwojcik

Miedzy innymi takie zabiegi jak powyzszy sprawiaja, ze instalacja GE-
NESIS ze zrodel moze stanowié nie lada wyzwanie. Autor pamieta czasy, kie-
dy kompilujac srodowisko dla nietypowych systeméw klasy UNIX niekiedy
mijaly tygodnie, zanim poprawne rozwiazanie udawalo sie¢ wdrozy¢. Nalezy
pamietaé, ze GENESIS jest rozwijany od 1986 roku. Cwieré wieku w infor-
matyce to wiecej niz cata epoka. Jest rzeczg naturalna, ze przez tak wiele
lat musiaty pojawi¢ si¢ mniejsze lub wieksze niezgodnosci w bibliotekach,
kompilatorach i w systemie jako takim. Tym wiekszy podziw i satysfakcje
powinna wzbudzaé¢ poprawnie przeprowadzona instalacja ze zrédet.

2.5. Kompilacja i instalacja

Po prawidtowym wykonaniu wszystkich czynnosci przedinstalacyjnych
mozemy przystapi¢ do procesu kompilacji Srodowiska. W tym celu powinni-
$my przej$¢ do katalogu zawierajacego zrédta. Bez wzgledu na to, w ktérym
miejscu znajdowaliSmy sie aktualnie — wykonanie ponizszych polecen prze-
niesie nas w pozadane teraz miejsce:

cd
cd genesis-2.3/genesis/src

Wtasciwy proces kompilacji rozpoczynamy wydajac dwa polecenia:

make clean
make all

Nalezy uzbroi¢ sie w cierpliwo$é. W starszych systemach kompilacja trwalta
okoto pét godziny. W dzisiejszych czasach, nawet na komputerach osobi-
stych, proces ten nie powinien zajaé¢ dluzej niz 5 minut.

Jezeli wszystko péjdzie dobrze (a powinno!) po kilku minutach z gaszczu
wyjsciowych komunikatéw konsoli naszym oczom powinien ukazaé sie tekst
marzen:

All Libs Compiled

cc -02 -D__NO_MATH_INLINES -Dnetcdf -DFMT1 -DINCSPRNG
-L/usr/lib sim/simlib.o sys/utillib.o ss/ss.o shell/s
helllib.o par/parlib.o buffer/buflib.o segment/seglib
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.0 hh/hhlib.o device/devlib.o out/outlib.o olf/olflib
.0 tools/toollib.o concen/conclib.o hines/hineslib.o

user/userlib.o param/paramlib.o pore/porelib.o oldcon
n/axon/axonlib.o oldconn/synapse/synlib.o oldconn/per
sonal/perlib.o oldconn/sim/simconnlib.o oldconn/tools
/toolconnlib.o diskio/interface/netcdf/netcdflib.o di
skio/interface/netcdf/netcdf-3.4/src/libsrc/libnetcdf
.a diskio/interface/FMT1/FMT1lib.o diskio/diskiolib.o
kinetics/kinlib.o newconn/newconnlib.o loadlib.o Xodu
s/_xo/xolib.o Xodus/_widg/widglib.o Xodus/_draw/drawl
ib.o Xodus/Draw/libDraw.a Xodus/Widg/libWidg.a Xodus/
Xo/libXo.a -L/usr/X11R6/1ib -1Xt -1X11 -1f1 -1lm sprng
/1ib/1liblfg.a -lncurses -o genesis

Full GENESIS Compiled -- All Done

Tak skompilowana wersje GENESIS nalezy teraz zainstalowaé wykonu-
jac polecenie:

make install
Jezeli instalacja zakonczy sie sukcesem otrzymamy komunikat:
Done with full install

Po zainstalowaniu GENESIS mozna przej$¢ do czynnosci poinstalacyjnych.

Zanim to uczynimy pragniemy poinformowaé czytelnikéw o mozliwosci
kompilacji i instalacji GENESIS na komputerach nie oferujacych srodowiska
graficznego X-Windows. Taka sytuacja wystepuje prawie zawsze wtedy gdy
korzystamy z klastréw obliczeniowych, w tym z wersji réwnolegtej PGENE-
SIS. Miedzy innymi ze wzgledéw bezpieczenstwa administratorzy nieczesto
decyduja sie na instalowanie okienek w superkomputerach. Co zatem zro-
bi¢ w przypadku, gdy GENESIS podczas kompilacji sporo czasu poswieca
na przetwarzanie plikéw o nazwach rozpoczynajacych sie od ,X-"7 Jako do-
bra wiadomosé podajemy, ze istnieje mozliwos¢ kompilacji i instalacji oma-
wianego Srodowiska z pominieciem grafiki, oferujacego tylko tryb tekstowy.
W tym celu nalezy wykonaé wszelkie powyzsze przedinstalacyjne zabiegi,
wlacznie z edycja pliku Makefile.

Sama kompilacja i instalacja przebiega po wydaniu polecen:

make clean
make nxall
make nxinstall

W przypadku Ubuntu istnieje jeszcze jeden, banalny sposéb zainstalowania
GENESIS. Wystarczy tylko wykonaé polecenie:
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sudo apt-get install genesis

by cieszy¢ sie dzialajaca wersja $rodowiska 2.3 bez koniecznosci wykonywa-
nia wszystkich czynnosci, o ktérych mowa od poczatku rozdzialu. W sytu-
acji, gdy uzytkownicy zamierzaja przeprowadzaé¢ symulacje na komputerze
osobistym, bez wykorzystania obliczen réwnolegtych taka instalacja w zu-
pelnosci wystarcza. Autor jednak stanowczo zacheca do kompilacji symula-
tora bezposrednio ze zrédet. Umozliwia to nie tylko tatwe pdZniejsze uak-
tualnienie do wersji réwnoleglej, ale réwniez daje mozliwosé bezposredniej
ingerencji w ,serce” érodowiska, co umozliwia wbhudowywanie wen nowych
funkcjonalnosci. No i jeszcze ta satysfakcja. ..; —)

2.6. Czynnosci poinstalacyjne

Po zakonczonej sukcesem instalacji wykonujemy czynnosci poinstalacyj-
ne. Najpierw nalezy skopiowaé¢ do katalogu domowego plik konfiguracyjny
.simrc albo w przypadku wersji bez X-Windows plik .nxsimrc. W tym
celu wykonujemy nastepujace polecenia:

cd
cp genesis-2.3/genesis/startup/.simrc .

ewentualnie:

cd
cp genesis-2.3/genesis/startup/.nxsimrc .

Nastepnie warto doda¢ Sciezke do katalogu, w ktérym znajduje sie skompi-
lowany GENESIS do pliku .bashrc w taki sposéb, aby z kazdego miejsca
w systemie w tatwy sposéb dato uruchamiaé sie skrypty. W tym celu otwie-
ramy plik konfiguracyjny powloki w dowolnym edytorze tekstu, np. gedit:

cd
gedit .bashrc

i na samym koncu dopisujemy linie:
export PATH=$PATH:/home/student/genesis-2.3/genesis/

gdzie zamiast stowa student wpisujemy nazwe katalogu domowego uzyt-
kownika.

7 punktu widzenia dalszych rozwazan wygodnie bedzie mieé¢ zainstalo-
wane w systemie narzedzie do wizualizacji wynikow. Idealnym kandydatem
wydaje sie tu by¢ gnuplot. Poza tym wygodnie bedzie wzbogaci¢ system
o starego dobrego Midnight Commandera i na przyktad kultowy edytor
tekstu emacs. Wykonanie polecenia:
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sudo apt-get install gnuplot mc emacs

dopelni dzieta instalacji GENESIS w srodowisku programisty systemu Ubun-
tu Linux 10.04.

2.7. Sprawdzenie instalacji

Poprawnie zainstalowany GENESIS uruchamiamy z dowolnego miejsca
w systemie wykonujac polecenie:

genesis

Uwaga: ze wzgledu na konieczno$é¢ zatadowania utworzonej przed chwila
Sciezki dostepu nalezy zamknaé terminal i otworzy¢ go na nowo.

Jezeli wszystko przebiegto dobrze to oczom uzytkownika powinien uka-
za¢ si¢ ekran podobny do Rys. [2.I] Pozostaje nam jeszcze sprawdzié¢ czy

lgmwoj cik@margot:~$ genesis
Starting Genesis

GENESIS
Release Version: 2.3

GENESIS is made available under the GNU General Public License,
GNU Library General Public License, or by the originating institution
with the permission of the authors

Type "help” for help with GENESIS

Executable: /home/gmwojcik/genesis-2.3/genesis/genesis
rrrrrrrrrrrrrrrrrrrrrrrrrrr Starting XODUS 2.0 -------------oommomoooooo

The diskio library uses the netcdf-version 3.4 library, which is provided
"as is" under the terms of distribution and usage by UCAR/Unidata

Please see src/diskio/interface/netcdf/netcdf-3.4/copyright.html

for the full notice.

IThe kinetics library is copylefted under the LGPL, see kinetics/COPYRIGHT.

Startup script: .sinrc
SIMPATH=. /home/gmwojcik/genesis-2.3/genesis/startup /home/gmwojcik/genesis-2.3/genesis/Scripts/neurokit /home/gmwojci

s
SIMPATH=. /home/gmwojcik/genesis-2.3/genesis/startup /home/gmwojcik/genesis-2.3/genesis/Scripts/neurokit /home/gmwojci
s /home/gmwojcik/genesis-2.3/genesis/Scripts/Xlcompat

SIMNOTES=/home/gmwojcik/.notes

GENESIS_HELP=/home/gmwojcik/genesis-2.3/genesis/Doc

lgenesis #0 > I

Rysunek 2.1. Konsola nowozainstalowanego GENESIS.

srodowisko zainstalowatlo sie réwniez poprawnie w trybie graficznym. W tym
celu wykonujemy polecenia:

cd
cd genesis-2.3/genesis/Scripts/squid
genesis Squid.g

Jezeli pojawia sie staroSwieckie okienka i panele kontrolne symulacji - mo-
zemy nacisnaé przycisk RUN, aby otrzymaé efekt podobny do Rys.
Przycisk QUIT powoduje wyjscie z tej przyktadowej symulacji.
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Rysunek 2.2. Nowozaistalowane GENESIS uruchomiony w trybie graficznym.

2.8. Podsumowanie

Przedstawiono proces kompilacji i instalacji érodowiska GENESIS v. 2.3
ze zrodel w systemie operacyjnym Ubuntu 10.04 LTS.

2.9. Zadania

Zadanie 1

Zainstaluj ze zrodet sSrodowisko GENESIS 2.3 na domowym komputerze.

Zadanie 2

Zainstaluj oprogramowanie przydatne do pracy w GENESIS.
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3. Podstawy jezyka skryptowego GENESIS

3.1. Wprowadzenie

W tym rozdziale zapoznamy sie z podstawami programowania w jezy-
ku skryptowym GENESIS — SLI (ang. Script Language Interpreter). Jezyk
ten, ktorego sktadnia nieco przypomina C++4, sprawia, ze GENESIS jest
od dwoch dekad jednym z najlepszych Srodowisk stuzacych modelowaniu
i symulacji zaréwno pojedynczych komoérek nerwowych jak i rozleglych sieci
neuronowych wielkiej skali.

3.2. Program ,,Hello World”

Poszczegdlne polecenia powtoki GENESIS mozna wydawaé bezposrednio
z konsoli symulatora. Nie jest to jednak wygodne rozwiazanie, dlatego ze
stworzenie duzego modelu wymagaloby bezblednego wydania kilkudziesie-
ciu albo kilkuset polecen. Nietrudno przewidzieé¢, ze w przypadku popelnie-
nia bledu ewentualna jego poprawa bylaby zmudnym albo i niewykonalnym
zadaniem. Dlatego skrypty GENESIS powinno si¢ pisa¢ w zwyktych plikach
tekstowych (z rozszerzeniem .g) wykorzystujac dowolny edytor, na przyklad
emacs, mcedit albo gedit.

Jako pierwszy program w GENESIS uczynimy to co uczyni¢ powinni
wszyscy programisci poznajacy nowy jezyk programowania. Napiszemy pro-
gram Hello World zapisujac w pliku hello.g nast¢pujace polecenie:

echo "Hello World"

Skrypt uruchamiamy przez wykonanie polecenia w konsoli systemu LinuxE]
(nie GENESIS):

genesis hello.g

Po wykonaniu komendy uruchamia si¢ sSrodowisko GENESIS i po zatadowa-
niu plikéw konfiguracyjnych w konsoli symultaora pojawiaja sie nastepujace
wiersze:

Simulation Script: hello.g
Hello World
genesis #0 >

Czytelnik, ktory dokonal powyzszego moze juz uznaé sie¢ za programiste
GENESIS :-).

1'W tym miejscu mniej zaawansowanym uzytkownikom systemu Linux polecamy
skrypt pod tytutem ,Srodowisko programisty” [25], w ktérym w sposéb szczegétowy
omoéwiono nie tylko poruszanie sie po konsoli systemowej lecz réwniez przedstawiono wiele
aplikacji, ktére moga przydac sie¢ w codziennym uzytkowaniu Ubuntu.
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3.3. Deklaracje zmiennych

W kolejnym kroku zapoznamy sie z deklaracjami zmiennych wystepuja-
cymi w GENESIS. Na poczatku proponujemy stworzy¢ skrypt zawierajacy
nastepujace linie:

echo "Demonstracja zmiennych."

float dt, dx, dy, dz
int i, j, k

float pi=3.1415

int alfa=137

dx = le-6
dy = 2e-6
dz = 0.005
i=7

j =13

k = 666

echo dx dy dz dt
echo i j k

echo {dx} {dy} {dz} {at}
echo {i} {j} {k}

Zmnaczenie polecenia echo jest intuicyjne, analizujac pierwszy przedstawio-
ny tu program wiemy, ze stuzy ono do wyswietlania tekstéw na ekranie.
Uzycie cudzystowow nie jest to obowigzkowe, jednak bedziemy go stosowaé
ze wzgledéw estetycznych. Zmienne moga by¢ nazywane przy pomocy cia-
gbow liter, cyfr i znaku podkreslenia, przy czym nazwa powinna zaczynadé sie
od litery. Zmienne typu rzeczywistego deklarujemy przy uzyciu dyrektywy
float, a catkowitego — int. W analizowanym programie zadeklarowali$my
zmienne rzeczywiste: dt, dx, dy, dz, pi oraz catkowite: i, j, k i alfa. Zmiennym
mozna przypisywaé wartosci zaréwno podczas inicjacji jak tez w dowolnym
miejscu programu. Przyjemna jest tez mozliwo$¢ przypisywania zmiennym
wartosci przy pomocy zapiséw dziesietnych typu le-4.

Jednym z aspektéw sprawiajacych wiele trudnosci na poczatku pracy
z GENESIS jest zagadnienie uzycia nawiaséw klamrowych. Ot6z przedsta-
wiony przyktad pokazuje wprost, iz wy$wietlenie zawartosci zmiennej dajmy
na to dx przy pomocy polecenia echo nastapi tylko wtedy gdy ujmiemy ja
w nawiasy klamrowe. Polecenie echo dx spwoduje tylko wy$wietlenie w kon-
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soli napisu dx. Innymi stowy, zeby dobrac sie do zawartosci zmiennej nalezy
uzy¢ nawiaséw klamrowych. Uzywamy ich zatem przy okazji wyswietlania
na ekran, przy przekazywaniu argumentéw do funkcji i w innych wymaga-
jacych tego sytuacjach. Czasami, kiedy jednoznacznie wiadomo, ze mamy
do czynienia z zawartoscia zmiennej, a nie z napisem — nawiasy klamrowe
mozna opuéci¢ (na przyklad w warunku albo w nagtéwku petli, ale o tym
pézniej).

Wykonanie skryptu powinno doprowadzi¢ do wys$wietlenia na ekranie
konsoli GENESIS nastepujacych wierszy:

Simulation Script: zmienne.g
Demonstracja zmiennych.

dx dy dz dt

ijk

1le-06 2e-06 0.005 O

7 13 666

genesis #0 >

Prosimy czytelnikow o wnikliwe przeanalizowanie tresci skryptu oraz wyniku
jego dziatania.

3.4. Operatory i wyrazenia

Kolejny skrypt przedstawia dziatanie operatoréw dodawania, odejmowa-
nia, mnozenia i dzielenia w GENESIS.

echo "Demonstracja zmiennych i operatorow."

float dt, dx, dy, dz
int i, j, k

float pi=3.1415

int alfa=137

dx = le-6
dy = 2e-6
dz = 0.005
i=7

j =13

k = 666

echo dx dy dz dt
echo i j k
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echo {dx} {dy} {dz} {at}
echo {i} {j} {k}

echo {2*dx+2*xdy+2*dz}
echo {(i-j)*(i+k)/13}
echo {(i-j)=*(i+k)/13.0%}

Warto zauwazy¢, ze do grupowania dziatan matematycznych tak jak w wiek-
szo$ci szanujacych sie jezykéw programowania stuza nawiasy okragte. Ostat-
nie dwie linijki skryptu réznig sie tylko dzielnikiem — w pierwszym przypad-
ku trzynastka jest zapisana klasycznie, w drugim jakoby wymuszamy branie
jej pod uwage jako liczby rzeczywistej przez dodanie rozwiniecia dziesiet-
nego .0. Poniewaz zmienne i,j,k sa catkowite to pierwsze dzielenie bedzie
dzieleniem caltkowitym, drugie za$ jako wynik da liczbe rzeczywista.
Efektem dzialania skryptu bedzie wyéwietlenie nastepujacych wierszy:

Simulation Script: operatory.g
Demonstracja zmiennych i operatorow.
dx dy dz dt

ijk

1le-06 2e-06 0.005 O

7 13 666

0.010006

-310

-310.6153846

genesis #0 >

Czytelnikéw uprasza si¢ o wnikliwe przeanalizowanie tresci skryptu oraz
wyniku jego dziatania.

3.5. Instrukcja warunkowa

W tej sekcji przedstawimy sktadnie instrukcji warunkowej. Prezentowa-
ny skrypt sprawdza czy zmienna ma wartos¢ wigksza od 15, a nastepnie
zmienia jej wartos¢ i dokonuje nastepnego poréwnania — tym razem z liczba
64. Instrukcja warunkowa w GENESIS zawiera kluczowe stowa if, else oraz
stowo ja konczace end. Dla pewnoéci tres¢ warunkéw zapisujemy w na-
wiasach. Przy okazji warto wspomnieé, ze operatory logiczne w instrukcji
warunkowej dzialaja tak jak w jezyku C++, to jest koniunkcja — & &, alter-
natywa — ||, negacja — !, poréwnanie — == no i relacje >, <, >= oraz <=.
Nalezy pamietaé¢ o logicznym stosowaniu nawiaséw podczas konstruowania
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warunkow i jak dobra rade przyjaé, ze lepiej jest mie¢ o jedna pare nawiasow
za duzo niz za malo.

echo "Demonstracja instrukcji IF ELSE."

echo "zadeklarujemy x=16."
int x = 16

echo "wchodzimy do instrukcji warunkowej i dostajemy:"

if (x>15)
echo "x jest wieksze od 16"
else

echo "x jest mniejsze albo rowne 16."
end

echo "a teraz ustawimy x=64."
x = 64

echo "wchodzimy do podobnej instrukcji warunkowej i dostajemy:"
if (x>64)

echo "x jest wieksze od 64."

else

echo "x jest mniejsze albo rowne 64."

end

Efektem dzialania przedstawionego skryptu sa nastepujace wiersze:

Simulation Script: if.g

Demonstracja instrukcji IF ELSE.

zadeklarujemy x=16.

wchodzimy do instrukcji warunkowej i dostajemy:

X jest wieksze od 16

a teraz ustawimy x=64.

wchodzimy do podobnej instrukcji warunkowej i dostajemy:
X jest mniejsze albo rowne 64.

genesis #0 >

Czytelnikéw prosimy o rzetelne zapoznanie sie z treécig skryptu i wynikiem
jego dziatania.
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3.6. Funkcje

Jezyk skryptowy GENESIS umozliwia korzystanie z funkcji. Wykorzy-
stujemy tu kluczowe stowo function, a koniec implementacji funkcji ozna-
czamy stowem end. W definicji funkcji — wszystkie argumenty umieszczamy
oddzielone przecinkami w nawiasie. Nalezy jednak pamietaé, ze bezposred-
nio pod identyfikatorem funkcji musimy podaé typy jej argumentéw dekla-
rujac odpowiednie zmienne.

Popusciwszy wodze wyobrazni postanowiliémy okresli¢ rozwigzywalno$é
réwnania kwadratowego wykorzystujac funkcje napisana w GENESIS i ob-
liczajaca wyrdznik tréjmianu kwadratowego (a co!). Tresé calego skryptu
prezentuje sie nastepujaco:

function wyroznik(a, b, c)
int a,b,c, delta

delta = {b*b-4x*xaxc}

if (delta > 0)

echo "delta = " {delta} ", beda dwa rozwiazania!"
else
if (delta == 0)
echo "delta = " {delta} ", bedzie jedno rozwiazanie!"
else
echo "delta = " {delta} ",nie bedzie rozwiazan!"
end
end

end // funkcji

echo "Rownanie kwadratowe - wersja light w GENESIS."
int a=1

int b=-2

int c=1

wyroznik {a} {b} {c}

wyroznik 2 3 4

wyroznik 3 16 1
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echo "KONIEC"

Funkcja w programie wywolywana jest trzykrotnie dla przypadkéow: A =
1,B=-2C=1,A=2B=3,C=4,A=3,B=16,C = 1. Za kaz-
dym razem funkcja informuje nas o liczbie rozwiazan okreslonego w zadany
sposob réwnania kwadratowego. Uwaga: podczas wywolywania funkcji liste
argumentow wprowadzamy bez nawiasoéw, oddzielajac je spacjami. Pamie-
tamy tez o rozsadnym stosowaniu nawiaséw klamrowych.

Wynik dzialania skryptu przedstawiaja ponizsze wiersze:

Simulation Script: delta.g
Rownanie kwadratowe - wersja light w GENESIS.

delta = 0 , bedzie jedno rozwiazanie!
delta = -23 ,nie bedzie rozwiazan!
delta = 244 , beda dwa rozwiazania!
KONIEC

genesis #0 >

Czytelnicy zechca zwrdci¢ uwage na zagniezdzona instrukcje warunkowa wy-
stepujaca w ciele funkcji oraz na tres¢ calego skryptu w odniesieniu do wy-
nikéw jego dziatania.

3.7. Petla for

Bardzo przydatna instrukcja, zwlaszcza przy tworzeniu sieci wielu neu-
ronéw, jest petla for. Nagléwek petli przypomina skladnie jezyka C++4,
nalezy jednak pamietac, ze cato$é¢ zakonczona jest kluczowym stowem end.
Przykladowy program wykorzystujacy petle for przedstawia listing;:

echo "Demonstracja dzialania petli FOR."
int 1

for (i=1; i<=10; i=i+1)
echo {i}
end

Ten kawatek kodu powoduje wy$wietlenie na ekranie kolejnych liczb catko-
witych od 1 do 10. Wynikiem dziatania skryptu ilustrujacego dziatanie petli
for jest wiec:

Simulation Script: for.g
Demonstracja dzialania petli FOR.
1
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genesis #0 >

Dla treningu mozemy teraz napisa¢ skrypt, ktéry wyséwietli na ekranie
kolejne (pierwsze 9) wyrazy ciagu Fibonacciego (jak szale¢ to szaled!).

echo "Ciag Fibonacciego w GENESIS"
int licznik, a0, al, a2

a0 =
al =

| |
= O

echo {a0}
echo {al}

for (licznik = 1; licznik < 8; licznik = licznik + 1)

a2 = a0 + a1l

echo {a2}
a0 = al
al = a2
end

Efektem dziatania skryptu bedzie wyéwietlenie ciagu liczb catkowitych, z kto-
rych pierwsze dwie to 01 1, a kazda nastepna jest suma dwoch bezposrednio

ja poprzedzajacych:

Simulation Script: fibon.g
Ciag Fibonacciego w GENESIS.
0

1
1
2
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3. Podstawy jezyka skryptowego GENESIS

3
5
8
13
21
genesis #0 >

Petle for podobnie jak instrukcje warunkowe moga by¢ wielokrotnie zagniez-
dzone. Nalezy tylko pamietaé¢ o blokowaniu instrukcji przy pomocy stéwka
end. czytelnicy proszeni sa o uwazne zapoznanie si¢ z przyktadami uzycia
petli for.

3.8. Inne wazne polecenia

Istnieje jeszcze wiele waznych instrukcji jezyka skryptowego GENESIS.
Autor staral sie przedstawi¢ tylko te najwazniejsze, niezbedne do rozpocze-
cia pracy z symulatorem. W miare wprowadzania nowych tresci — kolejne
instrukcje beda przemycane do $wiadomosci czytelnikéw. Warto tu wspo-
mnieé¢, ze GENESIS posiada sprawnie dzialajacy mechanizm obstugi plikow
tekstowych, generator liczb pseudolosowych, a informacja miedzy poszcze-
gélnymi elementami modelu przesylana jest za pomoca wiadomosci (ang.
messages).

3.9. Podsumowanie

W tym rozdziale przedstawiono najwazniejsze instrukcje skryptowego
jezyka GENESIS. czytelnicy po zapoznaniu si¢ z treScia niniejszego roz-
dziatu powinni juz potrafi¢ deklarowaé zmienne, wyswietlaé ich zawartosé
na ekranie, korzysta¢ z instrukcji warunkowej oraz petli. Do konstruowania
warunkow potrafia wykorzystywaé operatory relacji oraz logiczne.

3.10. Zadania

Zadanie 1

Napisz skrypt w GENESIS wyéwietlajacy na ekranie kilka zwrotek Two-
jej ulubionej piosenki.

Zadanie 2

Przepisz ze zrozumieniem wszystkie skrypty z niniejszego rozdziatu i sprawdz

czy wynik ich dzialania jest taki jak przedstawiony w tresci.



3.10. Zadania 37

Zadanie 3

Napisz dowolny skrypt prezentujacy dziatanie instrukcji warunkowe;j.

Zadanie 4

Napisz skrypt wyswietlajacy na ekranie dziesie¢ wyrazéw ciagu arytme-
tycznego o zadanym pierwszym wyrazie i réznicy.
Zadanie 5

Napisz skrypt wyswietlajacy na ekranie dwanascie wyrazéw ciagu geo-
metrycznego o zadanym pierwszym wyrazie i ilorazie.

Zadanie 6

Wykorzystujac zagniezdzone petle for napisz skrypt wyswietlajacy wy-
razy tabliczki mnozenia z zakresu od 1 x 1 do 10 x 10.
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4. Interfejs graficzny XODUS — podstawy

4.1. Wprowadzenie

W tym rozdziale bedzie wigcej rysunkéw niz tredci. Standardowy GENE-
SIS oferuje uzytkownikowi prace w $rodowisku graficznym o nazwie XODUS
(ang. X-Windows Output Display Utility System). Warto zwrécié uwage
na swego fantazje twoércow érodowiska — oto bowiem GENESIS to biblijna
Ksigga Rodzaju, XODUS - Ksiega Wyjscia. Dla porzadku podamy jeszcze,
ze grupa dyskusyjna uzytkownikéw GENESIS nosi nazwe BABEL.

XODUS sporo potrafi jednak ze wzgledu na swoj wiek wyglada tak, ze
moze podobaé sie tylko najbardziej zagorzatym fanom komputeréw Commo-
dore 64. Obecnie sami w dowolnym jezyku programowania mozemy napisaé
sobie programy lepiej wizualizujace aktywnos$é komorek, a takze w zaawan-
sowanych edytorach ustawia¢ parametry symulacji.

Jednak przez szacunek dla twércow pakietu pokazemy trzy najbardziej
widowiskowe modele wykorzystujace srodowisko graficzne XODUS.

4.2. Praca z komoérka — Neuron.g

Na poczatku pobawimy sie pojedyncza komérka. W tym celu nalezy
dostaé sie do katalogu genesis/Scripts/neuron i wykonaé polecenie:

genesis Neuron.g

Powinien wy$wietli¢ sie zestaw oldschoolowych okienek (Rys. [4.1}14.3)),
wéréd ktérych najwazniejszy jest panel sterowania control (Rys. . Sy-
mulacje uruchamiamy wciskajac przycisk step. W ten sposob mozemy bawié
sie bez konca pamietajac jednak, ze przed ponownym uruchomieniem nalezy
wcisnaé przycisk reset (tylko nie ten na obudowie komputeral).

Odpowiednie rézowe przyciski przy wykresach pozwalaja zmieni¢ skale
dla wyéwietlanych na osiach wartosci. Mozemy poeksperymentowaé z warto-
Sciami pradéow podawanych na poszczegdlne komorki, po czym wyjéé z mo-
delu wciskajac przycisk quit.

weee | meser | soe | I ell Paraneters
Tnputs I Defaults I Overlay nFFI Plot Sona I Sona Inj [0.0002 I s e A T I
Bend #1 Tnh. Wt ([0 Source B
= e
STEP (nsec) | [0, Cable Conpts. [0 Dend 1 Inj|[T Dendrite 1 I
| . I i (e[ I — '”” = | Dend #2 Exc. Wt. [[o Source nl
dt cusec) [[0.0L I Dend 2 Inj|[o. I Dend #2 Tnh. We. ([ [[Seurce B Dendrite 2 |

Rysunek 4.1. Panel sterowania symulacja Neuron.g
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Rysunek 4.2. Wykresy aktywnosci wejscia, przewodnoéci oraz potencjalu dendrytu
w symulacji Neuron.g
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Rysunek 4.3. Wykresy parametréw aktywacji kanaléw HH, przewodnosci oraz po-
tencjatu btony komoérkowej w symulacji Neuron.g
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4.3. Doswiadczenia na kalamarnicy — Squid.g

Eksperymenty na neuronach katamarnicy z doswiadczen Hodgkina i Hux-
leya wykonujemy na modelu znajdujacym sie w katalogu genesis/Script-
s/squid:

genesis Squid.g

Tu przyciskiem uruchamiajacym symulacje jest run znajdujacy sie w pa-
nelu sterowania control (Rys. [4.4). Warto réwniez przetestowaé zachowa-
nie modelu zmieniajac parametry w rozmaitych polach, pamietajac jednak
o tym, ze w przestarzatych interfejsach tego typu po dokonaniu zmiany
trzeba nacisnaé klawisz enter na klawiaturze komputera i to w chwili, gdy
kursor myszki znajduje si¢ nad edytowanym polem. Przycisk quit podob-
nie jak poprzednio stuzy do zamkniecia wszystkich okienek i opuszczenia
modelu.

tine (msec) || 50 I

dt tnsecd |[0.1 |
Overlay OFF

Rysunek 4.4. Panel sterowania symulacja Squid.g

State Plot Hidden

K channel unblocked

Ha channel unblocked

Rysunek 4.5. Kontrola kanaléw sodowych i potasowych w symulacji Squid.g
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Rysunek 4.6. Kontrola impulséw wejéciowych w symulacji Squid.g
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Rysunek 4.7. Kontrola zewnetrznych stezen jonowych w symulacji Squid.g
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Rysunek 4.8. Wykresy aktywnosci wejscia oraz potencjalu blony, przewodnosci
i pradu w kanalach jonowych w symulacji Squid.g
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4.4. Mechanizm uczenia — Hebb.g

Ciekawy przykltad modelu obrazujacego mechanizm uczenia wedtug Do-
nalda Hebba znajduje si¢ w katalogu genesis/Scripts/examples/hebb,
uruchamiany przez:

genesis hebb.g

Symulacje rozpoczynamy przez wcisniecie przycisku run na panelu sterowa-
nia control (Rys. . Oprécz innych ciekawych wielkosci warto przyjrzeé
sie wykresowi zmiany wagi synapsy Hebba (Rys. . Waga ta najpierw
narasta powoli, potem nastepuje gwaltowny wzrost, po czym ma miejsce wy-
razne wysycenie. Zupelnie jak w zyciu, gdzie przyswajanie jakiejs konkretnej
wiedzy na poczatku idzie nam opornie, potem szybko uczymy si¢ wraz z do-
swiadczeniem nowych rzeczy, ale zeby dojs¢ do perfekcji i mistrzowskiego
poziomu, na przyklad w opanowaniu jezyka — mijaja cale lata.

CONTROL PANEL

geser [ rw | stor [ ourr

input_rate I 50,

pre_taul I 0,010,

pre_tau? I 0,100,

pre_thresh_lo |3'0A—
pre_thresh_hi IZ.OA—
post_tau |0.020A

post_thresh_lo W
post_thresh_hi W
weight_change_rate |2.0A—

nin_ueight I 0,75,

nax_weight I 3

synaptic weight can be changed

Rysunek 4.9. Panel sterowania symulacja Hebb.g

4.5. Podsumowanie

Przedstawiono zarys mozliwosci pracy z interfejsem graficznym XODUS
symulatora GENESIS. Szczegbltowy opis tworzenia poszczegdlnych okienek
oraz znaczenie obecnych w nich elementéw znajduje sie w [19]
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Rysunek 4.10. Wykres przewodnosci kanatu w symulacji Hebb.g
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Rysunek 4.11. Wykres aktywnosci presynaptycznej w symulacji Hebb.g
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Rysunek 4.12. Wykres aktywno$ci postsynaptycznej w symulacji Hebb.g
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Rysunek 4.13. Wykres zmieniajacej si¢ wagi synaptycznej w symulacji Hebb.g
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4. Interfejs graficzny XODUS — podstawy

4.6. Zadania

Zadanie 1

Przetestuj model Neron.g. Zmieniaj skale wykreséw i parametry sy-
mulacji w taki sposob, zeby zaobserwowaé jakiekolwiek réznice. Nie musisz
zagltebiaé sie w neurofizjologie komorek.

Zadanie 2

Przetestuj model Squid.g. Zmieniaj skale wykreséw i parametry symu-
lacji w taki sposéb, zeby zaobserwowac jakiekolwiek réznice. Nie musisz
zaglebiaé si¢ w neurofizjologie komorek.

Zadanie 3

Przetestuj model hebb.g. Zmieniaj skale wykreséw i parametry symu-
lacji w taki sposéb, zeby zaobserwowac jakiekolwiek réznice. Nie musisz
zaglebiaé sie w neurofizjologie komorek.
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5. Modelowanie pojedynczej komérki nerwowej

5.1. Wprowadzenie

Celem rozdziatu jest nauczenie czytelnikéw modelowania pojedynczej ko-
morki nerwowej. Nauke rozpoczynamy od modelowania tylko ciata komérki
bez uwzgledniania standardowych jednostek uktadu SI. Nastepnie wprowa-
dzamy te jednostki i definiujemy zegary sterujace krokami poszczegdlnych
aspektéw symulacji. W kolejnym podrozdziale wprowadzamy kanaty jonowe
do modelowanego ciata komérki. Czytelnicy poznaja rowniez zasady zapisy-
wania wartosci potencjatu btony komérkowej do pliku oraz czasu pojawiania
sie potencjaléw czynnosciowych na symulowanej komorce. Na zakonczenie
pokazana jest przyktadowa konstrukcja bardziej ztozonej komérki z wyko-
rzystaniem metody Cell Reader. Wyniki prostych symulacji wizualizujemy
w programie gnuplot.

5.2. Modelowanie ciala komérki

Skrypty GENESIS zapisywane sa w plikach, ktérym tradycyjnie nadaje-
my rozszerzenie .g. Przyklady omawiane w tym rozdziale zadzialaja nawet
wtedy, gdy kazde polecenie wydamy bezposrednio z wiersza polecen srodo-
wiska. Przypominamy, ze nie jest to jednak zalecane ze wzgledu na fakt,
iz w razie pomylek moze zdarzy¢ sie konieczno$¢ ponownego wpisywania
wszystkiego od poczatku. Dlatego polecamy zapisaé nasze rozwazania w pli-
ku o nazwie np. 1cell.g, a nastepnie z poziomu konsoli systemu Linux uru-
chamiaé skrypty wykonujac polecenie:

genesis 1cell.g

pamietajac, zeby wezesniej przej$é¢ do katalogu, w ktérym znajduje sie skrypt.
Budowe modelu pojedynczej komérki nerwowej rozpoczynamy od tak
zwanej definicji elementu neutralnego:

create neutral /cell

Element neutralny o dowolnej nazwie, w tym przypadku cell, bedzie ele-
mentem nadrzednym nad wszystkimi pozostatymi elementami wchodzacymi
w sktad modelowanej komérki. W przypadku odwolywania si¢ do komorki
bedziemy podawaé nazwe elementu neutralnego. Cialo oraz dendryty ko-
moérki beda znajdowaly sie w strukturze modelu niejako pod elementem
neutralnym, podobnie jak zagniezdzone podkatalogi w dowolnym katalogu
systemu plikow.

W nastepnym kroku definiujemy ciato komérki jako takie. Tu obowigz-
kowo nalezy uzy¢ zarezerwowanej nazwy soma.

create compartment /cell/soma
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o1

Ustawiamy wartosci pol odpowiadajacych parametrom Hodgkina—Huxleya
odpowiednio na R,, = 10, Cp, = 2, E,,, = 25 oraz I;,;, = 5, na razie nie
zawracajac sobie glowy jednostkami uktadu SI.

setfield /cell/soma Rm 10 Cm 2 Em 25 inject 5

Nastepnie zapewniamy zapis uzyskanych w symulacji wartosci potencjatu
elektrycznego btony komérkowej do pliku tekstowego somal.vm.

create asc_file /soma_potential

setfield /soma_potential filename somal.vm append O
addmsg /cell/soma /soma_potential SAVE Vm

W powyzszym fragmencie kodu nalezy zwréci¢ uwage na skojarzenie obiek-
tu soma_potential z plikiem tekstowym (pierwsza linia), ustawienie pa-
rametrow w poszczegélnych polach obiektu skojarzonego z plikiem (w tym
fizycznej nazwy pliku na dysku — linia druga) oraz w trzeciej linii wystanie
wiadomodci z ciata komérki do zmiennej skojarzonej z plikiem tekstowym
przy jednoczesnym wydaniu dyrektywy SAVE dla potencjatu btony V,.

Pod koniec kazdego skryptu warto sprawdzi¢ czy zaprojektowane przez
nas struktury tworza poprawna logicznie calosé:

check
oraz zresetowac inicjacyjne parametry komorek:
reset

Polecenie step stuzy do wykonania zadanej jako parametr liczby krokéw
symulacji:

step 100

Warto zapewnié¢ powrét ze skryptu do powtoki systemu Linux wydajac po-
lecenie:

quit
Gotowy skrypt przyjmie teraz postac:

create neutral /cell
create compartment /cell/soma

setfield /cell/soma Rm 10 Cm 2 Em 25 inject 5
create asc_file /soma_potential

setfield /soma_potential filename somal.vm append O
addmsg /cell/soma /soma_potential SAVE Vm
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check
reset
step 100

quit

przy czym od poczatku warto pamietaé¢ o systematycznym komentowaniu
poszczegdlnych linijek tworzonych programéw.
Uruchamiamy skrypt poleceniem:

genesis 1cell.g

GENESIS uruchamia sie, wykonuje 100 krokéw symulacji, po czym wraca
do konsoli systemowej. Jezeli wszystko zadziatato poprawnie to w katalogu,
w ktérym rezyduje skrypt powinien pojawi¢ sie nowy plik somal.vm.

Program gnuplot jest doskonalym narzedziem do wizualizowania zwra-
canych przez GENESIS plikéw. W tym celu przygotujemy skrypt, ktéry
wykresli nam zawarto$é¢ otzrymanego z symulacji pliku i wyeksportuje gra-
fike do pliku postscriptowego wykresl.eps

set term postscript enhanced monochrome
set grid

set xlabel "t"

set ylabel "V_{m}"

set output "wykresl.eps"
plot "somal.vm" u 1:2 w 1 t "V_{m}"

Skrypt gnuplot uruchamiamy wykonujac polecenie:
gnuplot nazwa_skryptu_gnuplotowego

bezposrednio z konsoli Linuksa. Nalezy pamieta¢ o wcze$niejszym zainstalo-
waniu gnuplota, ale o tym byla juz mowa przy okazji instalacji i konfiguracji
GENESIS. Przytoczony skrypt zapewnia, ze na wykresie pojawi si¢ eleganc-
ka siatka, osie beda odpowiednio podpisane i wykreslimy druga kolumne
pliku somal.vm wzgledem pierwszej nadajac powstalej krzywej wltasciwy
podpis V,,, w legendzie.

Na Rys. [5.1] stosunkowo niewiele si¢ dzieje. Poniewaz nie zaimplemento-
walisSmy jeszcze kanaléw jonowych obserwujemy tylko narastanie potencjatu
w kolejnych stu krokach symulacji. Nie mamy jeszcze uwzglednionej norma-
lizacji do standardowych jednostek ukitadu SI, zatem mozna powiedzieé, ze
wzrost wartosci V,,, w czasie jest wrecz zbyt ,elegancki”.
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Rysunek 5.1. Potencjal blony komoérkowej bez kanaléw jonowych i bez uwzgled-
nienia jednostek SI.

5.3. Wprowadzenie zegaréw i jednostek SI

Wierniejsza symulacja ciala pojedynczej komérki wymaga uwzglednienia
jednostek uktadu SI oraz zainicjowania poszczegdlnych zmiennych w modelu
oryginalnymi warto$ciami z teorii Hodgkina—Huxleya. W tym celu na po-
czatku skryptu z ulepszonym modelem dodajemy blok instrukcji:

float PI = 3.14159

// Parametry ciala komorki w jednostkach SI

float RM = 0.33333 // opor blony (ohm m~2)

float CM = 0.01 // pojemnosc (farad/m"~2)

float RA = 0.3 // opor aksjalny (ohm m)

float EREST_ACT = -0.07 // potenc. spoczynkowy (volt)
float Eleak = EREST_ACT + 0.0106 // potenc. uplywu (volt)
float ENA 0.045 // potenc. rown. sodowy

float EK -0.082 // potenc. rown. potasowy

// wymiary komorki (m)
float soma_l = 30e-6 // dlugosc walca
float soma_d = 30e-6 // srednica walca

gdzie w formie komentarzy opisano znaczenie poszczegdlnych parametréw.
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Kolejnym krokiem wzbogacajacym omawiany model i waznym posunie-
ciem z punktu widzenia uruchamiania symulacji w GENESIS jest definicja
kroku czasowego symulacji oraz ustawienie tak zwanych zegaréw. Mniejszy
krok symulacji prowadzi do doktadniejszych wynikéw. Niestety zwiazane jest
to z wydluzeniem czasu obliczen. Twércy modeli powinni skupié¢ sie zatem
na optymalnym doborze kroku symulacji, ktory godzi doktadno$é¢ rezulta-
téw z akceptowalnym czasem przebiegu symulacji. Do ustawienia gléwnego
zegara modelu uzywa sie polecen, gdzies na poczatku skryptu:

float dt = 0.00005 // krok symulacji w sek.
setclock 0 {dt} // glowny zegar symulacji

przy czym mozna definiowaé wiele zegarow numerowanych kolejnymi liczba-
mi catkowitymi. P6zniej przekonamy sie, ze inne zegary moga by¢ wykorzy-
stane do prowadzenia symulacji jako takie (rozwiazywania ukladéw réwnan
rézniczkowych), a inne na przyklad do zapisywania wynikéw na dysk. W ten
sposob mozna zapewni¢ wierne obliczenia i rzadsze prébkowanie. Czesto ta-
kie podejscie jest wrecz wskazane.

Przyszta pora, by na prostym przyktadzie nauczyé¢ sie definiowaé¢ funk-
cje w GENESIS. Stworzymy funkcje, ktéra przyjmujac kilka parametrow
stworzy z nich element modelowanej komérki nerwowe;j:

function makecompartment(path, length, dia, Erest)
str path
float length, dia, Erest
float area = length*PIx*dia
float xarea = PIxdiaxdia/4

create compartment {path}
setfield {path} \
Em { Erest } \ // volts
Rm { RM/area } \ // Ohms
Cm { CMxarea } \ // Farads
Ra { RA*length/xarea } // Ohms
end

Jak wiemy - definicje funkcji rozpoczynamy od stowa kluczowego function,
a konczymy stowem end. Argumenty podajemy w nawiasach. W prezen-
towanym przyktadzie mamy ponadto do czynienia z zmiennymi typu tan-
cuchowego str i zmiennoprzecinkowymi float. Pamietajmy tez, ze wszelkie
odniesienia do zmiennych, ktére nie przywedrowaly do funkcji jako argu-
ment muszg byé poprzedzone ujeciem identyfikatora zmiennej w nawiasy
klamrowe. Czytelnik proszony jest o zwrdcenie uwagi na symbol \ stuzacy
do przetamywania linii.
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Dalsza czes¢ skryptu wyglada bardzo podobnie do pierwszego omawia-
nego przypadku. Po utworzeniu elementu neutralnego wywotujemy zadekla-
rowang wczesniej funkcje:

create neutral /cell
makecompartment /cell/soma {soma_1} {soma_d} {Eleak}

i zapewniamy pubudzanie ciata komorki pradem z zewnatrz:
setfield /cell/soma inject 0.3e-9 // prad o nat. 0.3 nA

Zapewniamy zapis wynikow na dysk do pliku soma2.vm, sprawdzamy po-
prawnosé, resetujemy aktywnosé:

create asc_file /soma_potential

useclock /soma_potential O

setfield /soma_potential filename soma2.vm append O
addmsg /cell/soma /soma_potential SAVE Vm

check
reset

i uruchamiamy symulacje w taki sposéb, by po zakonczeniu powrécié¢ do kon-
soli systemu Linux:

step 1 -time
quit

Parametr -time przy poleceniu step informuje GENESIS, ze symuluje-
my — w tym przypadku — jedng sekunde biologicznej aktywnosci komor-
ki. Oznacza to, ze przy zdefiniowanym wczes$niej kroku symulacji wynosza-
cym 0.00005 s system bedzie musial wykona¢ 20000 krokéw. Zauwazmy, ze
przy zapewnianiu zapisu wynikéw na dysk poinformowalismy GENESIS, ze
do czynnosci tej powinien uzywaé zegara identyfikowanego przez liczbe 0.

Po zakonczeniu symulacji mozemy wykresli¢é nowopowstaly plik. Skrypt
gnuplota wzbogacamy o jednostki SI w podpisach osi, pamietamy tez, ze
zaréwno plik z danymi jak i wyjéciowy powinny mie¢ inne nazwy.

set xlabel "t [s]"
set ylabel "V_{m} [V]"

set output "wykres2.eps"
plot "soma2.vm" u 1:2 w 1 t "V_{m}"

Rys. jest znormalizowany w stosunku do Rys. ale wciaz jeszcze
nie obserwujemy pikéw potencjatu czynnosciowego jako ze wciaz nie mamy
wprowadzonych do ciata komérki kanaléw jonowych.
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Rysunek 5.2. Potencjal blony komodrkowej bez kanalow jonowych, ale z uwzgled-
nieniem jednostek SI.

5.4. Wprowadzenie kanaléw jonowych

Kanaly jonowe wprowadza sie recznie do ciala modelowanej komoérki
w troche zawily sposéb, jednak jak przekonamy si¢ wkrétce caly proces
tworzenia komérek da sie elegancko zautomatyzowaé. W celu wzbogacenia
ciata komoérki o mechanizmy sodowo—potasowe na poczatku skryptu nalezy
zalaczy¢ biblioteke funkcji hhchan:

include hhchan

Nastepnie, tuz przed definicjg kroku symulacji powinnismy zadeklarowaé
zmienng konieczna do poprawnego dziatania funkcji z zataczonej wezesniej

biblioteki:
float SOMA_A = soma_l*PI*soma_d //pow. somy dla hhchan.g

Po stworzeniu elementu neutralnego i wlasciwego ciala komorki buduje-
my kanaly jonowe wspomagajac sie poleceniami pushe i pope stuzacymi
do wchodzenia wglab i wychodzenia na zewnatrz aktualnego elementu. Same
kanaty tworzone sa przez funkcje z hhchan.

pushe /cell/soma
make_Na_squid_hh
make_K_squid_hh

pope
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Teraz juz tylko musimy powiaza¢ kanaty jonowe z cialem komoérki przez
zapewnienie przesytania odpowiednich wiadomosci:

addmsg /cell/soma/Na_squid_hh /cell/soma CHANNEL Gk Ek
addmsg /cell/soma /cell/soma/Na_squid_hh VOLTAGE Vm
addmsg /cell/soma/K_squid_hh /cell/soma CHANNEL Gk Ek
addmsg /cell/soma /cell/soma/K_squid_hh VOLTAGE Vm

Tres¢ calego skryptu zawierajacego model ciata komorki wraz z zaim-
plementowanymi kanatami jonowymi wyglada nastepujaco:

include hhchan

float PI = 3.14159
float RM = 0.33333
float CM = 0.01
float RA = 0.3

float EREST_ACT = -0.07
float Eleak = EREST_ACT + 0.0106

float ENA = 0.045
float EK = -0.082
float soma_1l = 30e-6
float soma_d = 30e-6

float SOMA_A

soma_l*PIxsoma_d

float dt = 0.00005
setclock 0 {dt}

function makecompartment(path, length, dia, Erest)
str path
float length, dia, Erest
float area = length*PIx*dia
float xarea = PIxdiaxdia/4

create compartment {path}

setfield {path} \
Em { Erest } \
Rm { RM/area } \
Cm { CM*area } \

Ra { RA*length/xarea }
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end

create neutral /cell
makecompartment /cell/soma {soma_1} {soma_d} {Eleak}
setfield /cell/soma inject 0.3e-9

pushe /cell/soma
make_Na_squid_hh
make_K_squid_hh
pope

addmsg /cell/soma/Na_squid_hh /cell/soma CHANNEL Gk Ek
addmsg /cell/soma /cell/soma/Na_squid_hh VOLTAGE Vm
addmsg /cell/soma/K_squid_hh /cell/soma CHANNEL Gk Ek
addmsg /cell/soma /cell/soma/K_squid_hh VOLTAGE Vm

create asc_file /soma_potential

useclock /soma_potential O

setfield /soma_potential filename soma3.vm append O
addmsg /cell/soma /soma_potential SAVE Vm

check
reset

step 1 -time
quit

Dla przejrzystosci kodu pominieto wskazane i zawsze zalecane komentarze.

Rys. przedstawia wykres zmieniajacego sie potencjatu btony komor-
kowej w pierwszych 200 ms symulowanej aktywnosci biologicznej neuronu.
Wykres ten uzyskujemy przez dopisanie do skryptu gnuplota dwdéch linijek:

set output "wykres3.eps"
plot [0:0.2] "soma3.vm" u 1:2 w 1 t "V_{m}"

i ponownym uruchomieniu generatora wykreséw z nazwa pliku ze skryptem
jako parametrem.

5.5. Automatyzacja modelowania komoérek

Budowe nawet bardzo ztozonych komérek nerwowych da sie zautomaty-
zowac¢. W tym celu wykorzystujemy mechanizm wbudowany w GENESIS,
tak zwany Cell Reader.
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Rysunek 5.3. Potencjal blony komoérkowej z kanatami jonowymi i z uwzglednieniem
jednostek SI.

Definicje komérek umieszcza sie w pliku o specjalnej strukturze i rozsze-
rzeniu .p. Rozwazmy nastepujacy plik:

// cell.p - Cell parameter file used in Tutorial #5

// Format of file

// x,y,z,dia are in microns, all other units are SI (Meter K
// In polar mode ’r’ is in microns, theta and phi in degrees
// Control line options start with a ’*’

// The format for each compartment parameter line is

//name parent r theta phi d ch dens

//in polar mode, and in cartesian mode

//name parent x y z d ch dens

// For channels, "dens" = maximum conductance per unit area
// For spike elements, "dens" is the spike threshold

// Coordinate mode

*relative

*cartesian

*asymmetric

// Specifying constants
*set_compt_param RM 0.33333
*set_compt_param RA 0.3
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*set_compt_param CM 0.01
*set_compt_param EREST_ACT -0.07

// For the soma, use the leakage potential (-0.07 + 0.0106)
*set_compt_param ELEAK -0.0594
soma none 30 O O 30 Na_squid_hh 1200 K_squid_hh 360 spike O.

// The dendrite has no H-H channels, so ELEAK = EREST_ACT
*set_compt_param ELEAK -0.07
dend soma 100 O 0 2 Ex_channel 0.795775

W tym przypadku zachowaliémy oryginalne i wiele méwiace komentarze na-
pisane przez tworcow GENESIS. Z naszego punktu widzenia najwazniejsze
sg dwie linie rozpoczynajace si¢ od stéw soma none i dend soma znajduja-
ce si¢ pod koniec pliku. W ten sposéb informujemy Cell Readera, ze soma
nie posiada elementu nadrzednego, natomiast dendryt dend wychodzi z so-
ma. Zwréémy tez uwage na kanaly wzbudzajacy Ex_channel i hamujacy
Inh_channel zdefiniowane w obrebie dendrytu. W analogiczny sposéb mo-
zemy konstruowaé¢ komérki zawierajace wiele wielokrotnie rozgaleziajacych
sie dendrytow. Pozostate linie pliku cell.p zawieraja standardowe wartosci
parametréw Hodgkina—Huxleya i przynajmniej na poczatku nie powinny
by¢ zmieniane przez niedoswiadczonych uzytkownikéw.

Korzystanie z mechanizmu Cell Reader niesie najwigcej zalet wtedy,
gdy w modelu rézne wystepuja komoérki. Wtedy kazda komérka zdefiniowana
jest w osobnym pliku. Wezytanie komoérki podczas symulacji dokonuje sie
przez wykonanie polecenia readcell i wczesniejszym zataczeniu biblioteki
protodefs:

include protodefs.g
readcell cell.p /cell

Uwaga: Biblioteke protodefs.g musimy najpierw przekopiowaé do katalogu
z tworzonym modelem z katalogu genesis/Scripts/ tutorialsﬂ Cieszmy sie
zatem, ze nie musimy juz za kazdym razem wpisywaé bloku ze zmiennymi
w ukladzie SI, definiowa¢ funkcji tworzacej elementy itp. Caly skrypt wy-
korzystujacy Cell Reader przyjmuje nastepujaca postac:

float dt = 0.00005
setclock 0 {dt}

L Jezeli instalowalismy GENESIS z gotowego pakietu deb, to biblioteka
protodefs.g moze znajdowaé¢ sie w trudnym do znalezienia katalogu, gdzies
w glebokich czelusciach systemu operacyjnego. Istnieje duza szansa, ze uda
nam sie ja przekopiowa¢ do katalogu biezacego za pomoca polecenia: cp
/usr/share/genesis-2.3/Scripts/tutorials/protodefs.g . i gotowe.
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include protodefs.g
readcell cell.p /cell

setfield /cell/soma inject 0.3e-9

create asc_file /soma_potential

useclock /soma_potential 0O

setfield /soma_potential filename soma4.vm append O
addmsg /cell/soma /soma_potential SAVE Vm

reset
check

step 1 -time

quit

Po wykonaniu skryptu w katalogu z modelem powstaje plik soma4.vm,
ktory mozemy wykresli¢.

5.6. Zapis czasu powstawania piku

W symulacji komoérek nerwowych czesto nie zalezy nam na dokladnym
odwzorowaniu przebiegu wartosci potencjatu btony, a jedynie na zarejestro-
waniu czasu wystepowania poszczegdlnych pikéw potencjalu czynnosciowe-
go. Podejscie takie pozwala znaczaco skrocié czas symulacji i oszczedza miej-
sce na dysku. GENESIS pozwala na zapis omawianej wielkosci w stosunkowo
prosty sposéb. Fragment skryptu:

create spikehistory /soma_spikes
setfield = filename soma4.spike append O ident_toggle 1
addmsg /cell/soma/spike /soma_spikes SPIKESAVE

tworzy historie pojawiania sie pikéw w obiekcie soma_spikes, ktéry z kolei

kojarzy z plikiem (tu. soma4.spike) na dysku i przesyla wiadomosé SPI-

KESAVE z elementu spike ciata komorki do rzeczonego obiektu z historia.
Plik soma4.spike ma postac:

/cell/soma/spike 0.348050
/cell/soma/spike 0.363750
/cell/soma/spike 0.379450
/cell/soma/spike 0.395150
/cell/soma/spike 0.410800
/cell/soma/spike 0.426500
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gdzie w prawej kolumnie zapisane sg czasy wystepowania pikow potencjatu
czynnosciowego.

5.7. Podsumowanie

Przedstawiono szczegbtowo zasade projektowania modelu ciata pojedyn-
czej komérki nerwowej. Opisano réwniez mechanizm Cell Reader pozwala-
jacy w tatwy spsodb konstruowaé komorki zawierajace dendryty. zataczono
tres¢ najwazniejszych skryptéw oraz opisano metody wizualizacji zapisanych
na dysk wynikow z wykorzystaniem programu gnuplot.

5.8. Zadania

Zadanie 1

Napisz skrypt zawierajacy ciatlo komérki z whudowanymi kanatami jo-
nowymi sodowymi i potasowymi w standardzie jednostek SI. Unikaj stoso-
wania metody ,kopiuj — wklej”.

Zadanie 2

Napisz skrypt, ktory tworzy dwie komorki zbudowane z ciata i dwdch
dendrytéw kazda z wykorzystaniem mechanizmu Cell Reader. Zapisz ak-
tywnos¢ obu komérek na dysk i wykresl przebiegi wartosci potencjatu btony
w pierwszych 300 ms symulacji.

Zadanie 3

Wzbogaé skrypt z Zadania 2 o zapis czasow pojawiania si¢ pikéw po-
tencjalu czynnosciowego.
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6.1. Wprowadzenie

W tym rozdziale zapoznamy si¢ z metodologia tworzenia polaczen mie-
dzy komoérkami. W pierwszej sekcji zdefiniujemy funkcje przydatna w two-
rzeniu synaps. Nastepnie poznamy generator losowych pobudzen, ktory moz-
na bedzie podlaczaé za pomoca synapsy do modelowanych komérek. Naj-
prostsza sie¢ neuronowa bedzie zbudowana z dwdéch elementéow. Nauczy-
my sie ponadto w sposéb swiadomy konstruowaé modele dwuwymiarowych
i trojwymiarowych sieci neuronowych oraz zapisywaé i wizualizowaé ich ak-
tywnoé¢ w srodowisku gnuplot.

6.2. Tworzenie synaps

Idea synapsy zostata wbudowana bezposrednio w symulator i podczas
implementacji polaczen w model nie musimy martwié¢ sie o szczegbdlowy
i skomplikowany numerycznie mechanizm Hodgkina—Huxleya, podobnie jak
nie musimy wprost kodowa¢ réwnan rézniczkowych opisujacych zachowanie
fragmentow poszczegdlnych komoérek.

Kazda synapsa uzyta w GENESIS charakteryzuje sie dwoma parametra-
mi: wagg i opdznieniem synaptycznym wyrazanym w sekundach. Do stwo-
rzenia synapsy warto napisa¢ funkcje make_synapse:

function make_synapse(pre,post,weight,delay)
str pre,post

float weight,delay

int syn_num

addmsg {pre} {post} SPIKE

syn_num = {getfield {post} nsynapses} - 1

setfield {post} synapse[{syn_num}].weight {weight} \
synapse [{syn_num}] .delay {delay}

echo {pre} "--->" {post} {weight} {delay}

end

W powyzszym kodzie pre i post to argumenty, w ktérych do funkcji przesy-
tane sa elementy presynaptyczny i postsynaptyczny. Ponadto parametrami
funkcji sa waga weight i opdznienie delay. Zmienna syn_num jest po-
mocnicza i stuzy do przechowywania liczby synaps dochodzacych do danej
komorki w taki sposob, by tworzona nowa synapsa zajeta pierwsze, wolne
i dostepne miejsce w strukturze synaps modelowanego neuronu. Po utwo-
rzeniu synapsy na konsole GENESIS wysytamy komunikat informacyjny
o polaczonych wtlasnie elementach presynaptycznym i postsynaptycznym.
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6.3. Generator losowych pobudzen

We wszelkiego rodzaju modelach dobrze jest zapewnié¢ zmieniajace sie
w czasie pobudzenie wybranej komorki badZz grupy komérek. W tym ce-
lu generujemy losowo zmieniajace sie w czasie ciagi pobudzen symulujace
piki potencjaléw czynnos$ciowych wirtualnych komérek (ang. random spike
trains) za pomoca obiektu randomspike. Deklaracja losowego ciagu tego
typu impulséw moze wygladaé¢ nastepujaco:

create randomspike /input
setfield ~ min_amp 1 max_amp 1 rate 200 reset 1 reset_value O

Poszczegdlne pola generatora oznaczaja:

— min_amp — minimalng amplitude zdarzenia,

— max_amp — maksymalna amplitude zdarzenia,

— rate — érednia czestos¢ generatora wyrazona w Hz,

— reset — flage wlaczajaca badz wylaczajaca resetowanie generatora po kaz-
dym zdarzeniu,

— reset_value — wartosé¢ do jakiej resetowad,

— state — aktualny stan obiektu,

— abs_refract — minimalny czas miedzy zdarzeniami.

Pokazuje to, ze w przypadku stworzonego przed chwilg generatora o nazwie

input uzyliémy tylko kilku z nich.
Warto tez zwréci¢ uwage na symbol daszka oznaczajacy w jezyku skryp-

towym GENESIS odwotanie do poprzednio zdefiniowanego obiektu.
Zalézmy, ze w pewnym modelu tworzymy przy pomocy mechanizmu

Cell Reader komorke cell sktadajaca sie z ciata i jednego dendrytu na-

zwanego dend. Podlaczenie generatora impulséw input do kanatu wzbu-

dzajacego dendrytu komorki cell przyjmuje nastepujaca postac:

make_synapse /input /cell/dend/Ex_channel 2 0

Zauwazmy, ze opdznienie synaptyczne miedzy generatorem a komoérka
wynosi 0 przy wadze potaczenia standardowo w takich sytuacjach usta-
wionej na 2. Waga informuje nas w pewnym sensie o stopniu wzmocnie-
nia sygnatlu wysyltanego przez generator badz inng komérke. W zaleznosci
od parametréw komoérki postsynaptycznej — wagi o konkretnej wartosci mo-
gg doprowadzié¢ do jej wzbudzenia, inne zas nie wzmacniaja sygnatu komérki
presynaptycznej do takiego stopnia, ktéry wywotatby wytadowanie. Caly za$
skrypt (przy zalozeniu, ze korzystamy z pliku cell.p, w ktérym definiujemy
odpowiednia komérke) przedstawia sie nastepujaco:

float dt = 0.00005
setclock 0 {dt}
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include functions.g // nasze zdefiniowane funkcje
include protodefs.g

readcell cell.p /cell // plik z definicja komorki
randseed // generator liczb pseudolosowych

create randomspike /input
setfield ~ min_amp 1 max_amp 1 rate 200 reset 1 \
reset_value O

make_synapse /input /cell/dend/Ex_channel 2 0

create asc_file /soma_potential

useclock /soma_potential 0O

setfield /soma_potential filename somab.vm append O
addmsg /cell/soma /soma_potential SAVE Vm

create spikehistory /soma_spikes
setfield = filename soma.spike append O ident_toggle 1
addmsg /cell/soma/spike /soma_spikes SPIKESAVE

reset
check

step 1 -time
quit

Nalezy zauwazy¢, ze w trzeciej linii korzystamy ze znanego juz polecenia inc-
lude za pomoca ktérego dotaczamy do skryptu plik functions.g, w ktérym
beda znajdowaé sie definicje wykorzystywanych przez nas funkcji. W oma-
wianym przypadku w pliku tym powinna byé juz obecna definicja funkcji
tworzenia synapsy. Czytelnicy niebawem zauwaza, ze warto posiadaé swoj
osobisty plik functions.g, ktéry bedzie rozrastal sie i wzbogacal o nowe
funkcje wraz z osobistym zaawansowaniem w GENESIS.

Ponadto uzyte zostato polecenie randseed inicjujace generator liczb
pseudolosowych, konieczne do odmiennego za kazdym razem dziatania ge-
neratora input.

Po wykonaniu skryptu powstana pliki soma.vm z przebiegiem poten-
cjalu na ciele komérki oraz soma.spike z zanotowanym czasem wystapienia
pikéw potencjatu czynnosciowego w komorce cell.
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Przebieg potencjalu na modelowanej w ten sposéb komoérce przedstawio-

no na Rys.
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Rysunek 6.1. Potencjal blony komérkowej neuronu podlaczonego do generatora
typu randomspike

6.4. Sie¢ zbudowana z dwoéch komoérek

Na obecnym poziomie zaawansowania mozemy pokusié¢ sie o stworzenie
najprostszej sieci neuronéw Hodgkina—Huxleya zawierajacej dwie potaczone
komérki i generator. Niech bedzie dana komoérka A z jednym dendrytem
podtaczona do generatora losowych impulséw oraz taka sama komoérka B
podlaczona do komérki A.

Za pomoca znanych nam metod powinni$my stworzy¢ dwie komorki ko-
rzystajac z Cell Readera oraz generator. Nastepnie laczymy stworzony
generator z kanalem wzbudzajacym dendrytu komoérki A z waga w = 0
i op6znieniem d = 0. Podlaczajac komérke B do A wiazemy synapsa kanat
wzbudzajacy jej jedynego dendrytu z polem spike ciala neuronu presy-
naptycznego z waga w = 2.8 i opdznieniem d = 0.0004 s. Nalezy jeszcze
tylko zapewni¢ zapis aktywnosci obu komorek do plikow soma_A.vm, so-
ma_B.vm, soma_A.spike i soma_B.spike, sprawdzi¢ wewnetrzng spoj-
noé¢ modelu check, zresetowaé sie¢ reset i uruchomié symulacje jednej se-
kundy aktywnosci biologicznej takiego uktadu step 1 -time. Gotowy skrypt
powinien wygladaé¢ nastepujaco:

float dt = 0.00005 // simulation time step in sec
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setclock 0 {dt} // set the simulation clock

include functiomns.g
include protodefs.g

readcell cell.p /cell_A
readcell cell.p /cell_B

randseed

create randomspike /input
setfield ~ min_amp 1 max_amp 1 rate 200 reset 1 \
reset_value 0

make_synapse /input /cell_A/dend/Ex_channel 2 0
make_synapse /cell_A/soma/spike \
/cell_B/dend/Ex_channel 2.8 1le-04

create asc_file /soma_A_potential

useclock /soma_A_potential 0

setfield /soma_A_potential filename soma_A.vm append O
addmsg /cell_A/soma /soma_A_potential SAVE Vm

create asc_file /soma_B_potential

useclock /soma_B_potential 0

setfield /soma_B_potential filename soma_B.vm append O
addmsg /cell_B/soma /soma_B_potential SAVE Vm

create spikehistory /soma_A_spikes
setfield = filename soma_A.spike append O ident_toggle
addmsg /cell_A/soma/spike /soma_A_spikes SPIKESAVE

create spikehistory /soma_B_spikes
setfield ~ filename soma_B.spike append O ident_toggle
addmsg /cell_B/soma/spike /soma_B_spikes SPIKESAVE

reset
check

step 1 -time
quit
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Przebieg wartosci potencjalu na obu modelowanych komorkach przedsta-
wiono na Rys. Wykres wygenerowano wydajac polecenie:

plot [0:0.25] "soma_A.vm" u 1:2 w 1 t "Cell A V_{m}", \
"soma_B.vm" u 1:2 w 1 t "Cell B V_{m}"

w programie gnuplot.Warto zwréci¢ uwage na zwiazane z opdznieniem
synaptycznym przesuniecie pikéw potencjalu czynnosciowego komoérki B

wzgledem przebiegu komorki A.
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Rysunek 6.2. Potencjal bton komdrkowych neuronéw cell_A i cell B w pierwszych
250 ms symulacji

6.5. Sie¢ dwuwymiarowa I

Potrafimy zbudowaé juz sie¢ z dwdch neuronéw. W tym miejscu warto
zastanowi¢ sie jak budowaé sieci zawierajace wiele takich samych komérek
i potaczonych wedtug okreslonej reguty. Z punktu widzenia zagadnien réw-
noleglizacji modeli warto budowa¢ dwuwymiarowe struktury na prostokat-
nych siatkach. Zaktadamy, ze neurony w siatce beda indeksowane liczbami
catkowitymi. W tym celu gdzies na poczatku modelu warto zadeklarowaé
globalne zmienne array_minx oraz array_miny okreslajace poczatkowe
indeksy komoérek w wierszach i kolumnach. Przez analogie okreslamy tez
zmienne sep_x i sep_y, ktére determinuja odlegtos¢ poszczegdlnych komo-
rek wzdluz obu osi.
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Poniewaz czesto bedziemy tworzy¢ sieci dwuwymiarowe — warto do bi-
blioteki naszych wlasnych funkcji dopisa¢ funkcje make_circuit_2d. Nowa
funkcja jako argumenty przyjmuje prototyp komérki do kopiowania, pierw-
szy czlon nazwy tworzonej sieci oraz jej wymiary.

function make_circuit_2d(protocell, net, nx, ny)
str protocell
int i, ]

for (i=1; i<={nx};i={i+1})
for (j=1; j<={ny};j={j+1})

copy {protocell} {met}_{i}_{j}

position {net}_{i}_{j} { {array_minx} + ({sep_x} * {i}) } \
{ {array_miny} + ({sep_y} * {j}) } \
{0}
end
end

end

W funkcji tej korzystamy z podwdjnej, zagniezdzonej petli for oraz funkcji
copy i position odpowiednio tworzacych i ustawiajacych kolejne komérki
na siatce w weztach indeksowanych przez i oraz j.

Zapis aktywnosci sieci wykonujemy korzystajac ze zdobytej dotychczas
wiedzy i tworzymy funkcje, ktéra automatyzuje caty proces:

function make_circuit_2d_output(net, nx, ny, filename)
int 1,

create spikehistory {net}-history
setfield ~ filename {filename}.spike append O ident_toggle 1

for (i=1; i<={nx}; i={i+1})
for (j=1; j<={ny}; j={j+1})

addmsg {net}_{i}_{j}/soma/spike {net}-history SPIKESAVE

end
end

echo {net} spike activity saved to file {filename}.spike
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end

Zauwazmy, ze jako argument funkcji - oprocz pierwszego cztonu nazwy sieci,
z ktérej zbieramy aktywnosé i jej wymiaréw podajemy nazwe pliku filena-
me, do ktérej w ciele funkcji dotaczone zostanie jeszcze rozszerzenie spike.
Po wykonaniu symulacji w plikach o tym rozszerzeniu bedzie zapisana ak-
tywnos¢ poszczegdlnych komoérek sieci.

Przyktadowy fragment kodu wykorzystujacy obie funkcje i konieczne
deklaracje moze wygladaé¢ nastepujaco:

include protodefs.g
int array_minx = 1
int array_miny = 1

40e-6
40e-6

float sep_x
float sep_y

include functions.g

readcell cell.p /cell
make_circuit_2d /cell /net2d 16 16
make_circuit_2d_output /net2d 16 16 rec-net2d

Fragment kodu, ktéry powinien zrealizowaé¢ 10% tzw. polaczenia pelnego
(ang. full connection) moze wygladaé nastepujaco:

randseed
float probability = 0.1
int i1, j1, i2, j2

for (i1=1; i1<=16; i1={i1+1})
for (j1=1; j1<=16; j1={j1+1})
for (i2=1; i2<=16; i2={i2+1})
for (j2=1; j2<=16; j2={j2+1})

if ( {rand 0 1} < {probability} )

make_synapse /net2d_{il1}_{j1}/soma/spike \
/net2d_{i2}_{j2}/dend/Ex_channel 2.8 1le-04

end

end
end
end
end
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Mamy tu az cztery zagniezdzone petle, bo po kazdej komoérce algorytm musi
przeciez przejs¢ dwa razy — traktujac ja jako presynaptyczna i postsynap-
tyczna. Synapsy tworzymy korzystajac ze zdefiniowanej wczesniej funkcji.
Oprécz tego deklarujemy zmienng okreslajaca prawdopodobienstwo, a loso-
wania dokonujemy przy pomocy funkcji randseed z okreslonym przedzia-
tem jako parametrem, pamictajac o wczesniejszej inicjacji generatora liczb
pseudolosowych randseed (Uwaga: wystarczy to uczynié tylko raz w pro-
gramie). Zakladajac, ze komérki wykorzystywane do tworzenia opisywanych
tu sieci zostaly zaprojektowane i sparametryzowane tak jak w niniejszym
podreczniku - optymalna waga dla polaczen miedzy nimi wynosi w=2.8,
a op6znienie d=0.0001 s. Pamietajmy tez, ze zeby uzyskaé jakikolwiek za-
pis aktywnosci sieci — powinnismy zapewni¢ stymulacje wybranego neuronu
lub neuronéw z zewnetrznego zrédla, na przyktad z generatora losowych
impulsow.

create randomspike /input
setfield ~ min_amp 1 max_amp 1 rate 200 reset 1 \
reset_value 0

make_synapse /input /net2d_8_8/dend/Ex_channel 2 0

6.6. Sie¢ trojwymiarowa I

W analogiczny sposéb budujemy sieci tréjwymiarowe. Sieci takie two-
rzymy na siatce prostopadloscianu (mimo to czesto nazywane sa kolumnami
neuronalnymi). Przyjemno$é z analizy tresci funkcji make_circuit_3d po-
zostawiamy czytelnikowi.

function make_circuit_3d(protocell, net, nx, ny, nz)
str protocell
int 1i,j,k

for (i=1; i<={nx};i={i+1})
for (j=1; j<={ny};j={j+1})
for (k=1; k<={nz};k={k+1})

copy {protocell} {met}_{i}_{jr_{k}

position {met}_{i}_{j}_{k} \
{ {array_minx} + ({sep_x} * {i}) } \
{ {array_miny} + ({sep_y} * {j}) } \
{ {array_minz} + ({sep_z} * {k}) }
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end
end
end
end

Podobnie do przypadku 2D zapewniamy zapis aktywnosci tréjwymiarowej
sieci do pliku:

function make_circuit_3d_output(net, nx, ny, nz, filename)
int 1i,j,k

create spikehistory {netl}-history
setfield ~ filename {filename}.spike append O ident_toggle 1

for (i=1; i<={nx}; i={i+1})
for (j=1; j<={ny}; j={j+1})
for (k=1; k<={nz};k={k+1})

addmsg {net}_{i}_{j}_{k}/soma/spike \
{net}-history SPIKESAVE

end
end
end

echo {net} spike activity saved to file {filename}.spike
end

/A

Przyktadowy fragment kodu wykorzystujacy obie funkcje i konieczne
deklaracje moze wygladaé¢ nastepujaco:

include protodefs.g

int array_minx = 1
int array_miny = 1
int array_minz = 1

float sep_x = 40e-6
float sep_y = 40e-6
float sep_z = 40e-6

include functions.g
readcell cell.p /cell
make_circuit_3d /cell /net3d 2 3 4
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make_circuit_3d_output /net3d 2 3 4 rec-net3d

Laczenie zas komérek w obrebie kolumny z okreslonym prawdopodobien-
stwem wymaga zagniezdzenia szeSciu petli:

randseed
float probability = 0.1
int i1, i2, j1, j2, k1, k2

for (il=1; i1<=2; i1={i1+1})
for (ji=1; j1<=3; j1={j1+1})
for (ki=1; ki<=4; ki={k1+1})
for (i2=1; i2<=2; i2={i2+1})
for (j2=1; j2<=3; j2={j2+1})
for (k2=1; k2<=4; k2={k2+1})

if ( {rand 0 1} < {probability} )

make_synapse /net3d_{il}_{j1}_{k1}/soma/spike \
/net3d_{i2}_{j2}_{k2}/dend/Ex_channel 2.8 le-04

end
end
end
end
end
end
end

Czytelnik zechce zauwazyé, ze wagi potaczen miedzy konkretnymi komorka-
mi nie musza by¢ zawsze state. Stosunkowo tatwo uzalezni¢ je na przyktad
od odlegtosci euklidesowej lub innych, wlasnorecznie zdefiniowanych para-
metrow modelu. Oczywiscie musimy pamietaé, ze w celu obserwacji niezero-
wej aktywnodci sieci — musimy zapewnié¢ stymulacje wybranego neuronu lub
grupy neuronéw z zewnetrznego zrodla, na przyktad z generatora losowych
impulsow.

6.7. Alternatywny sposdb tworzenia sieci 2D
Warto wiedzieé¢, ze GENESIS oferuje mozliwo$é konstruowania dwuwy-

miarowych sieci neuronowych przy pomocy funkcji createmap. Przyktado-
we wywolanie tej funkcji ma postaé:
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createmap /cell /met2d 20 5 -delta {sep_x} {sep_y}

gdzie utworzono sto komorek na siatce o wymiarach 20 x 5 i oddalonych
o predefiniowane przez nas wczesniej odlegtosci. Niestety z punktu widze-
nia struktury danych w modelu — komérki te przechowywane sa w tablicy
indeksowanej od 0 do 99.

Zapis aktywnosci utworzonej w ten sposéb sieci zapewniamy wykorzy-
stujac napisang specjalna funkcje:

function make_output_2d(net, filename)
str net, filename

create spikehistory {netl}-spikes

setfield "~ filename {filename} append O ident_toggle 1
addmsg {net}[]/soma/spike {net}-spikes SPIKESAVE

end

gdzie warto zwréci¢ uwage na puste w srodku nawiasy kwadratowy [] stu-
zace do odwotywania si¢ do sieci jako catosci. Wywotanie funkcji z poziomu
gltéwnego skryptu modelu ma postac:

make_output_2d /net2d/cell net2d.spike

Potaczenia w sieci zapewniamy przez wywolanie funkcji make_synapse,
na przyktad taczymy druga komorke z si6dma wykonujac polecenie:

make_synapse /net2d/cell[2]/soma/spike \
/net2d/cell[7]/dend/Ex_channel \
{weight} {delay}

lub w dowolny inny zautomatyzowany sposob.

GENESIS zapewnia rowniez interesujace metody nadawania struktury
wag i opdznien dla sieci jako calosci tworzonych przy pomocy finkcji create-
map. Polecenia planarweight i planardelay zostaly szczegbétowo opisane
w osiemnastym rozdziale [19].

6.8. Podsumowanie

W tym rozdziale przedstawiono metody tworzenia sieci neuronowych.
Po zapoznaniu sie z tym rozdzialem czytelnik powinien potrafi¢ zbudowac
zaréwno proste sieci zawierajace kilka komoérek jak réwniez skomplikowane
dwu— i tréojwymiarowe struktury. Przedstawiono tres¢ kilku pozytecznych
funkcji: do tworzenia synaps, obwodéw dwuwymiarowych, tréjwymiarowych
i zapisywania aktywnoéci. Potrafimy tez tworzy¢ generatory losowych impul-
sow 1 wizualizowaé aktywnos$¢ wybranych komoérek przy pomocy programu
gnuplot.
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6.9. Zadania

Zadanie 1

Stworz model, ktéry zawiera trzy komorki: A, B i C. Komoérka A jest
podiaczona do generatora, komérka B pobiera pobudzenia od komorki A,
a komorka C od komorki B. Napisz skrypty, ktore przygotuja zapis aktyw-
nosci poszczegdlnych komorek w odrebnych plikach .spike oraz przebiegi
potencjalow w plikach .vm.

Zadanie 2

Napisz model zawierajacy tablice 100 komérek utozonych na kwadrato-
wej siatce 10 x 10. Zrealizuj 15% polaczenia pelnego. Zapisz aktywno$é sieci
do pliku .spike.

Zadanie 3

Napisz model zawierajacy tablice 100 komérek utozonych na kwadrato-
wej siatce 10 x 10 korzystajac z funkcji createmap. Zrealizuj 25% polacze-
nia pelnego. Zapisz aktywnosé sieci do pliku .spike. Do realizacji potaczen
mozesz wykorzysta¢ dowolng metode: przedstawiona w tym rozdziale lub
planarweight i planardelay. Podlacz trzy wybrane komorki do generato-
ra.

Zadanie 4

Napisz model zawierajacy tablice 512 komorek utozonych na tréjwymia-
rowej siatce 8 x 8 x 8. Uwaga w symulowanej sieci zaaranzuj 80% pola-
czen wzbudzajacych (do dend/Ex_channel) i 20% hamujacych (do den-
d/Inh_channel). Zapisz aktywnos¢ sieci do pliku .spike. Podlacz pie¢ wy-
branych komoérek do generatora.
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7. Wizualizacja aktywnosci sieci

7.1. Wprowadzenie

W tym rozdziale nauczymy sie wizualizowaé¢ aktywnos$¢ symulowanych
sieci neuronowych za pomocg wbhudowanych w GENESIS gotowych narze-
dzi. O ile wizualizacja na przyktad zmian potencjatu wybranej komérki moze
by¢ z tatwoscia przeprowadzona w Srodowisku gnuplot, a wykorzystywane
przez GENESIS obiekty XODUS wydaja si¢ by¢ przestarzalte, o tyle wizuali-
zacja w postaci mapy dwuwymiarowej dynamiki neuronalnej sieci zawiera-
jacej kilkadziesigt neuronéw w symulatorze GENESIS wyglada dostatecznie
tadnie i czasami nie warto tracié¢ czasu na tworzenie nowej aplikacji li tylko
do pokazania migoczacych kwadratéw.

7.2. Przykladowa sieé

Zanim pokazemy jak wizualizowa¢ aktywnosé¢ komoérek stworzymy prosty
model zawierajacy dwie sieci netl i net2, w kazdej po 64 neurony rozmiesz-
czone na siatce o wymiarach 8 x 8. W obrebie kazdej sieci, a takze miedzy
nimi prawdopodobienstwo utworzenia synapsy ustalono na 10%. Sieci two-
rzymy korzystajac z poznanego wczedniej polecenia createmap rozmiesz-
czajac komdrki na mapach w odlegtoéciach sep_x o sep_y. Aktywnosé sieci
zapisujemy do plikoéw z rozszerzeniem .spike — funkcja make _mapoutput.
Do ustawienia losowych potaczen w obrebie kazdej sieci wykorzystujemy
funkcje connect_map, do polaczenia pierwszej sieci z druga korzysta sie
z funkcji connect_two_maps. Stymulujemy zerowa komoérke pierwszej sie-
ci z generatora losowych impulséw. Symulujemy jedng sekunde aktywno-
Sci biologicznej systemu. Opisany tu model tworzony jest w nastepujacym
skrypcie:

float sep_x=0.001 // odl. komorek w kierunku x w [m]
float sep_y=0.001 // odl. komorek w kierunku y w [m]

float genrate=200

setclock 0 0.000005
setclock 1 {1.0/{genrate}} // for generator

include functions-wizualizacja.g
include protodefs.g

readcell cell.p /cell

createmap /cell /netl 8 8 -delta {sep_x} {sep_y}
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createmap /cell /mnet2 8 8 -delta {sep_x} {sep_y}

create randomspike /input

setfield ~ min_amp 1 max_amp 1 rate {genrate} reset 1 \
reset_value 0 abs_refract O

useclock /input 1

create spikehistory /input-spikes
setfield = filename input.spike append O ident_toggle 1
addmsg /input /input-spikes SPIKESAVE

connect_map /netl 8 8 0.1
connect_map /net2 8 8 0.1
connect_two_maps /netl /met2 8 8 0.1

make_synapse /input /netl1/cell[0]/dend/Ex_channel 10 0 O

make_mapoutput /netl/cell netl.spike
make_mapoutput /net2/cell net2.spike

check
reset

step 1 -time

gdzie wszystkie funkcje zawarte w pliku functions_wizualizacja.g przyj-
muja nastepujaca postacé:

function make_synapse(pre,post,weight,delay)
str pre,post

float weight,delay

int syn_num

addmsg {pre} {post} SPIKE

syn_num = {getfield {post} nsynapses} - 1

setfield {post} synapsel[{syn_num}].weight {weightl} \
synapse [{syn_num}] .delay {delay}

echo {pre} "--->" {post} {weight} {delay}

end

function make_mapoutput(net, filename)
str net, filename



80

7. Wizualizacja aktywnosci sieci

create spikehistory {net}-spikes
setfield ~ filename {filename} append O ident_toggle 1
addmsg {net}[]/soma/spike {net}-spikes SPIKESAVE

end

function connect_map (net, nx, ny, prob)
int i,j, netdim

netdim = {nx} * {ny}

for (i=0;i<netdim;i=i+1)
for (j=0;j<netdim;j=j+1)

if ({rand 0 1} < {prob} )
make_synapse {net}/cell[{i}]/soma/spike \
{net}/cell[{j}]/dend/Ex_channel 1.8 le-04
end
end
end

end

function connect_two_maps (netl, net2, nx, ny, prob)
int 1i,j, netdim

netdim = {nx} * {ny}

for (i=1;i<netdim;i=i+1)
for (j=1;j<netdim;j=j+1)

if ({rand 0 1} < {prob} )
make_synapse {netl1}/cell[{i}]/soma/spike \
{net2}/cell[{j}]/dend/Ex_channel 1.8 1le-04
end
end
end

end

Po uruchomieniu opisywanego skryptu na dysku powstana dwa pliki
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netl.spike i net2.spike, w ktorych zapisana zostanie aktywnos¢ obu sieci.
Na razie bez sladu wizualizacji.

7.3. Wizualizacja

Korzystajac z przykladow zamieszczonych w kodzie GENESIS do pliku
z funkcjami trzeba teraz dopisa¢ funkcje odpowiedzialng za wizualizacje
aktywnosé sieci:

function make_netview (network, Nx, Ny, name, x, y, w, h)
// sets up xview widget to display Vm of each cell

int x,y,w,h

create xform /{name}-netview [{x},{y},{w},{h}]
create xdraw /{name}-netview/draw [0%,0%,100%, 100%]
// Make the display region a bit larger than the cell array
setfield /{name}-netview/draw \
xmin {-sep_x} xmax {Nx*sep_x} \
ymin {-sep_y} ymax {Ny*sep_y}
create xview /{name}-netview/draw/view
setfield /{name}-netview/draw/view path \
{network}/soma field Vm \
value_min -0.08 value_max 0.03 \
viewmode colorview sizescale {0.9*sep_x}
xshow /{name}-netview

end
a w kodzie zawierajacym model jako taki trzeba ja po prostu wywotaé:

make_netview /netl/cell[] 8 8 "metl-activity" 50 50 300 300
make_netview /net2/cell[] 8 8 "met2-activity" 350 50 300 300

okreslajac jako parametry rozmiary sieci, tytut okienka oraz wspétrzedne le-
wych gérnych rogéow wyéwietlanych okienek wraz z ich rozmiarami w pionie
i w poziomie.

Teraz wywolanie skryptu spowoduje pojawienie sie na ekranie okienek
wizualizujacych aktywnos$é z migoczacymi kwadracikami odpowiadajacymi
kazdemu z symulowanych neuronéw Rys.
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7. Wizualizacja aktywnosci sieci

©©® nett-activity-netviewy ®® net2-activity-netview X

HETEH HE
HEEEETEE

Rysunek 7.1. Wizualizacja aktywnosci sieci w XODUS.

7.4. Podsumowanie

Przedstawiono prosta metode wizualizacji aktywnosci sieci neuronéw
modelowanych w GENESIS skompilowanym z bibliotekami graficznymi XO-
DUS. czesto taka wizualizacja wystarcza, zeby przesledzi¢ podstawowe za-
chowania wystepujace w badanym modelu. W bardziej skomplikowanych
przypadkach zaleca sie tworzenie wtasnej, odrebnej aplikacji z danymi wej-
Sciowymi w postaci plikéw .spike i wizualizujacej aktywnosé sieci w poza-
dany sposéb.

7.5. Zadania

Zadanie 1

Stworz model zawierajacy trzy kwadratowe sieci netl, net2 oraz net3
o wymiarach 10 x 10 potaczone wewnatrz i miedzy soba z pewnym, zdefinio-
wanym przez ciebie prawdopodobienstwem. Wizualizuj aktywnos¢ modelu.

Zadanie 2

Zmodyfikuj funkcje z poprzedniego zadania w taki sposob, zeby tworzone
i wizualizowane sieci mogty by¢é prostokatne. Stworz wizualizacje aktywnosci
sieci 8 x 5.

Zadanie 3

Napisz aplikacje zewnetrzna stuzaca do wizualizacji aktywnosci sieci
na podstawie plikéw .spike.
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8. Instalacja i konfiguracja PGENESIS

8.1. Wprowadzenie

Prawdziwg potege GENESIS pokazuje w wersji rownolegtej. Dysponujac
klastrami obliczeniowymi mozna projektowac¢ modele zawierajace dziesiatki,
a nawet setki tysiecy neurondéw z liczbg synaps rzedu miliona. Ograniczeniem
jest oczywiscie zdolnosé obliczeniowa maszyny, na ktoérej symulacja zostanie
uruchomiona. Niemniej jednak juz wykorzystanie dwurdzeniowych proce-
soré6w pozwala w sposob istotny zmniejszy¢ czas wykonywanych obliczen
numerycznych, czyli szybciej rozwiazaé¢ duzy uklad réwnan rézniczkowych
Hodgkina—Huxleya. W tym rozdziale nauczymy sie kompilowa¢ ze zrédet
rownolegla odmiane GENESIS zwang PGENESIS oraz przygotowaé kom-
puter wielordzeniowy do prowadzenia symulacji réwnolegtych.

8.2. Instalacja zalezno$ci

Zanim rozpoczniemy instalacje PGENESIS i konfiguracje maszyny row-
noleglej powinnismy doinstalowaé do systemu kilka programéw (kompilator
g+ i powloke csh) oraz bibliotek graficznych wraz z ich narzedziami dewe-
loperskimi. Instalacja powyzszych jest warunkiem koniecznym do poprawnej
kompilacji srodowiska w systemie operacyjnym Ubuntu 10.04 i wyzszych.

W konsoli systemu wykonujemy polecenie:

sudo apt-get install csh g++ libxt-dev libxt6 libxtst6 \
libxtst-dev libxmu-dev

8.3. Instalacja MPICH2

Komputer réwnolegly zbudujemy w oparciu o ogélnodostepna, darmowa
i przeno$na implementacje standardu MPI dla systemu Linux. W tym celu
skorzystamy z biblioteki MPICH2 [26]. Instalacja MPICH2 w Ubuntu jest
niezwykle prosta. Wystarczy wykonaé¢ polecenie:

sudo apt-get install mpich2

Nie zawsze jednak to co najprostsze jest najlepsze. Autor z wlasnego do-
swiadczenia moze potwierdzi¢, ze najlepszym rozwiazaniem bedzie kompila-
cja najnowszej wersji biblioteki wprost ze zrédet. Pozwoli to uniknaé czesto
nieprzewidzianych i niepozadanych ktopotéw. Problemy moga wynikaé bez-
posrednio z uszkodzonych zaleznosci miedzy pakietami, niewiedzy lub nie-
dostosowania predefiniowanej konfiguracji do potrzeb indywidualnych uzyt-
kownikow, w tym wypadku programistéw PGENESIS.

Zrédla biblioteki mozna pobraé z [26] lub wykonujac bezposrdenio z kon-
soli polecenie (dlugi adres www oczywiscie wpisujemy w jednej linii):
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wget http://www.mcs.anl.gov/research/projects/mpich2/
downloads/tarballs/1.4.1p1/mpich2-1.4.1pl.tar.gz

Po zapisaniu pliku na dysk proponujemy przeniesienie go do katalogu do-
mowego uzytkownika oraz rozpakowanie:

mv mpich2-1.4.1pl.tar.gz ~
cd
tar xvfz mpich2-1.4.1pl.tar.gz

W dalszej kolejnosci utworzymy katalog, w ktérym bedzie rezydowaé insta-
lacja MPICH2.

mkdir mpich2-install

Nastepnie nalezy wej$¢ do katalogu zawierajacego zrédla biblioteki i rozpo-
czaé proces konfiguracji:

./configure --prefix=/home/student/mpich2-install \
--disable-f77 --disable-fc

Wykonujac polecenie . /configure informujemy konfigurator o potozeniu
katalogu, w ktérym znajdzie sie skompilowana biblioteka oraz prosimy go
by nie brat pod uwage aspektéw zwigzanych z kompilatorem jezyka FOR-
TRAN. P6ki co nie bedzie nam on w PGENESIS potrzebny.

Po udanej konfiguracji powinnisémy otrzymaé¢ na ekranie konsoli komu-
nikat:

Configuration completed.

Biblioteke MPICH2 nalezy teraz skompilowa¢ wydajac polecenie:
make

i zainstalowac:

make install

Otrzymujemy odpowiednio komunikaty:

Make completed

oraz

Installed MPE2 in /home/student/mpich2-install

Proces instalacji MPICH2 konczymy przez dopisanie w sekcji pliku .ba-
shrc (rozpoczynajacej sie od export PATH=) definiujacej Sciezke dostepu
nastepujacej frazy:

:/home/student/mpich2-install/bin

bezposrednio za ostatnim katalogiem zdefiniowanym w Sciezce.



86

8. Instalacja i konfiguracja PGENESIS

8.4. Edycja Makefile

Proces instalacji PGENESIS rozpoczynamy od pobrania wersji réwno-
leglej srodowiska bezposrednio ze strony twércéw [27]. Obecnie najnowsza
wersja PGENESIS oznaczona jest numerem 2.3. PowinniSmy wigc pobraé
plik 0 nazwie pgenesis-2.3-src.tar.gz (wiekszo$¢ uzytkownikéw pewnie juz
pobrata ten plik wczesniej). Plik ten nalezy przenie$¢ do katalogu gltéwnego
i rozpakowac:

mv pgenesis-2.3-src.tar.gz
tar xvfz pgenesis-2.3-src.tar.gz

Jezeli instalacja i konfiguracja GENESIS w wersji standardowej przebie-
gla pomyélnie (a autor nawet nie dopuszcza mysli, ze moglo tak nie by¢)
to powinnidémy otrzymac katalog pgenesis w katalogu genesis-2.3 obok
katalogu genesis ze standardowa wersja.

Wchodzimy do katalogu z zrédtami wersji réwnolegle;j:

cd genesis-2.3/pgenesis
i kopiujemy plik Makefile.dist do Makefile:
cp Makefile.dist Makefile

Nastepnie nalezy dokonaé edycji pliku Makefile w taki sposob, by przy-
stosowaé go do uzywanego systemu operacyjnego.

Edycje rozpoczynamy od usuniecia komentarzy z linii 147 i 148 pliku
Makefile. Musimy poinformowaé¢ kompilator, ze skorzystamy z biblioteki
MPICH2. Po usunigciu komentarzy linie wygladaja tak:

USE_MPI =1
MPI_LIB =

Linie od 159 do 164 réwniez powinny zosta¢ odkomentowane:

MPI_CMD = ’mpirun -np $$num_nodes $$exec $$nargv’
MPI_DEBUG_CMD = ’mpirun -gdb -np $$num_nodes $$exec $$nargv
# # these last three are needed even with MPI to keep the sc
PVM_ROQOT = $(PWD)

PVM_ARCH = $(MACHINE)

SET_PVM_ARCH = $(PVM_ARCH)

W dalszej kolejnoéci nalezy odszukaé sekcje konfiguracyjnag Linuksa i usu-
na¢ odpowiednie komentarze w taki sposéb, by fragment pliku Makefile
wygladal tak (wersja 32 bitowa systemu):

#~ ~ ~ o~~~ o~~~ e~ e e e e .. .

# System: Linux 1.2.x and up on Intel x86-based, Xeon,
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# and AMD 64-bit systems.
# Compiler: GCC
4~ ~ ~ v o~ o~~~ e~ e~ e e e e~ e~ o

## 2000-05-23

## Termcap/ncurses issues: The shell library makes reference
## termcap library. Some Linux distributions have an ncurse
## which is includes termcap emulation. GENESIS appears to

## properly with the ncurses supplied with Red Hat Linux 5.1
## and Debian Linux (glibc2.1, egcs-2.91.66). However, link
## ncurses is known to have resulted in core dumps in GENESI
## Linux versions.

##

## If you encounter problems linking with the TERMCAP flags

## or the GENESIS command line interface does not work, try

## following alternatives:

##

## 1) TERMCAP = -ltermcap

##

## 2) (If you are using SuSE Linux)

#i# TERMCAP = /usr/lib/termcap/libtermcap.a

##

## 3) (If you are using Red Hat Linux prior to version 6.0)

#i# TERMCAP = /usr/lib/libtermcap.a

##

MACHINE=Linux
0S=BSD

XINCLUDE=-I/usr/X11R6/include

## 64-bit machines probably need /usr/X11R6/1ib64 here.
XLIB=/usr/X11R6/1ib

CC=mpicc

## 01d (and probably broken) gcc installations may need the
## path to cpp (preferably NOT one in /lib). If there isn’t
## [link to] cpp in the same directory as ’cc’, you should c
## [relinstalling a newer gcc.

CPP=cpp -P

CFLAGS=-02 -D__NO_MATH_INLINES
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## For 64-bit architectures
# CFLAGS=-02 -D__NO_MATH_INLINES -DLONGWORDS

LD=1d

## 11

## Don’t uncomment the next line unless you get errors about
## libraries not being found. Setting this path may interfer
## the default (probably correct) operation of the loader, b
## 64-bit architectures may need /usr/lib64 here.

## LDFLAGS=-L/usr/lib

RANLIB=ranlib
AR=ar
CPLIB=cp

YACC=bison -y
LEX=flex -1
LEXLIB=-1f1

LIBS= $(LEXLIB) -1m

TERMCAP=-1ncurses
TERMOPT=-DTERMIO -DDONT_USE_SIGIO

## end Linux 1.2.x and up on Intel x86-based systems

Zwr6éémy uwage, ze przypomina on znaczaco analogiczny fragment pliku
konfiguracyjnego klasycznego GENESIS.

Dla systeméw 64 bitowych odpowiadajaca sekcja w pliku Makefile wy-
glada tak:

P T T
# System: Linux 1.2.x and up on Intel x86-based, Xeon,

# and AMD 64-bit systems.

# Compiler: GCC

4~ ~ v o~ o~~~ o~ e e e e e e e e

## 2000-05-23

## Termcap/ncurses issues: The shell library makes reference
## termcap library. Some Linux distributions have an ncurse
## which is includes termcap emulation. GENESIS appears to
## properly with the ncurses supplied with Red Hat Linux 5.1
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## and Debian Linux (glibc2.1, egcs-2.91.66). However, link
## ncurses is known to have resulted in core dumps in GENESI
## Linux versions.

##

## If you encounter problems linking with the TERMCAP flags

## or the GENESIS command line interface does not work, try

## following alternatives:

##

## 1) TERMCAP = -ltermcap

#i#

## 2) (If you are using SuSE Linux)

## TERMCAP = /usr/lib/termcap/libtermcap.a

##

## 3) (If you are using Red Hat Linux prior to version 6.0)

## TERMCAP = /usr/lib/libtermcap.a

##

MACHINE=Linux
0S=BSD

XINCLUDE=-I/usr/X11R6/include

## 64-bit machines probably need /usr/X11R6/1ib64 here.
XLIB=/usr/X11R6/1ib

CC=mpicc

## 01d (and probably broken) gcc installations may need the
## path to cpp (preferably NOT one in /1ib). If there isn’t
## [link to] cpp in the same directory as ’cc’, you should c
## [relinstalling a newer gcc.

CPP=cpp -P

CFLAGS=-02 -D__NO_MATH_INLINES

## For 64-bit architectures
CFLAGS=-02 -D__NO_MATH_INLINES -DLONGWORDS

LD=1d
## 111

## Don’t uncomment the next line unless you get errors about
## libraries not being found. Setting this path may interfer
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## the default (probably correct) operation of the loader, b
## 64-bit architectures may need /usr/1ib64 here.
## LDFLAGS=-L/usr/lib

RANLIB=ranlib
AR=ar
CPLIB=cp

YACC=bison -y
LEX=flex -1
LEXLIB=-1f1

LIBS= $(LEXLIB) -1m

TERMCAP=-1ncurses
TERMOPT=-DTERMIO -DDONT_USE_SIGIO

## end Linux 1.2.x and up on Intel x86-based systems

Najwazniejsza czynnoscia, o ktorej czesto zapominamy i ktérej nie byto
w wersji szeregowej GENESIS jest usuniecie komentarza z linii 1353:

# when the Makefile has been configured, uncomment this vari
EDITED = yes // to jest linia 1353!

informujacego program make, ze dokonano edycji pliku Makefile.

8.5. Kompilacja i instalacja

Tak przygotowany plik Makefile pozwala rozpoczaé¢ proces kompilacji
i instalacji PGENESIS.

make clean
make install

Proces ten trwa znacznie krécej niz kompilacja wlasciwego GENESIS, nie
konczy sie jakim$ specjalnie radosnym komunikatem.

Jezeli wszystko przebieglo pomyslnie to w katalogu pgenesis/bin po-
winien pojawié¢ sie wykonywalny plik pgenesis.

W tym miejscu warto wspomnie¢, ze gdyby zaszta koniecznosé instalacji
PGENESIS w wersji bez okienek — nalezy najpierw skompilowaé do takiej
wersji uzywane dotychczas GENESIS. Instalacja PGENESIS bez okienek
dokonuje sie po wykonaniu polecenia:

make nxinstall
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Instalacje GENESIS bez XODUS opisano wczesniej.

Co wiecej, autor zaleca kompilacje PGENESIS w wersji bez obstugi
X-Windows ze wzgledu na czeste problemy pojawiajace sie przy okazji
wspbipracy przestarzatego interfejsu XODUS z najnowszymi bibliotekami
GTK. Poza tym obliczenia réwnolegte wykonuje sie najczeéciej na klastrach
obliczeniowych, na ktérych ze wzgledéw bezpieczenstwa i tak $rodowisko
graficzne nie jest zainstalowane.

Wszystkie przykladowe skrypty zawierajace réwnoleglizacje be-
da tworzone i testowane dla PGENESIS w odmianie bez okienek.

Na tym etapie najwazniejsza cze$é¢ instalacji mozna uznaé za zakonczo-
na.

8.6. Czynnosci poinstalacyjne

Po zainstalowaniu PGENESIS nalezy skopiowaé plik .psimrc (albo .nxp-
simrc) z katalogu pgenesis/startup do katalogu gléwnego:

cd startup
cp .psimrc © // albo cp .nxpsimrc ~

Oczywiscie do $ciezki dostepéw w pliku .bashrc dodajemy fraze:
:/home/student/genesis-2.3/pgenesis/bin

zeby z kazdego miejsca w systemie mozna byto uruchamiaé¢ wersje réwnole-
gla.

8.7. Testowanie instalacji

Po kompletnym przygotowaniu i kompilacji érodowiska mozna sprawdzié¢
z dowolnego miejsca w konsoli systemu czy PGENESIS skompilowal sie
poprawnie. Nalezy wiec wykonaé¢ komende:

pgenesis
i jesli wszystko poszto dobrze ba ekranie otrzymujemy informacje:

performing checks...
starting pgenesis executable
num_nodes: Undefined variable.

Nalezy pamietac, ze po dodaniu PGENESIS do $ciezki dostepu powinni-
$my zamknaé¢ konsole Linuksa i otworzy¢ ja raz jeszcze. To najwygodniejszy
sposob przetadowania Sciezki, zapewniajacy pgenesis widocznosé z dowol-
nego miejsca w systemie.
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8.8. Podsumowanie

Przedstawiono krok po kroku metodologie kompilacji i instalacji bibliote-
ki MPICH2 oraz réwnolegtej wersji symulatora GENESIS. Czytelnikom za-
leca si¢ przygotowanie PGENESIS w wersji bez $rodowiska X-WINDOWS.

8.9. Zadania

Zadanie 1

Skompiluj ze zrédet i zainstaluj najnowsza wersje biblioteki MPICH2.

Zadanie 2
Skompiluj ze zrédet i zainstaluj PGENESIS w wersji standardowe;j.

Zadanie 3

Skompiluj i zainstaluj ze zrédet PGENESIS w wersji bez XODUS. Pa-
mietaj o wezesniejszej rekompilacji GENESIS do wersji bez wsparcia syste-
mu X. Mozesz stworzy¢ sobie dodatkowe katalogi na wersje NX obu symu-
latoréw, pamietaj jednak o koniecznoéci dodawania odpowiednich $ciezek
w pliku .bashrec.
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9. Symulacje réwnolegte w PGENESIS

9.1. Wprowadzenie

W tym rozdziale nauczymy sie rozdziela¢ zadania symulatora na poszcze-
gblne procesory albo rdzenie procesoréw maszyny réwnoleglej. Zaczniemy
od najprostszego modelu zawierajacego dwa neurony, skonczymy na mode-
lu sieci zawierajacej 128 neuronéw symulowanych na dwoéch procesorach.
Okazuje sig, ze w PGENESIS wystepuje zaledwie kilka sztuczek stuzacych
rozplataniu algorytméw na wiele watkdéw. Sposob réwnoleglizacji ograniczo-
ny jest tylko wyobraznia projektanta modelu.

9.2. Dwa neurony

Kazdy skrypt, ktory ma by¢ rozwidlony na kilka wspo6tbieznych proceséw
powinien rozpoczynaé sie od linii:

paron -parallel -nodes 3

W przytoczonym tu przypadku rozpraszamy symulacje na trzy nody. Warto
zapamiegtaé, ze w réwnoleglym PGENESIS powinnismy dbaé o pozostawie-
nie jednego dodatkowego nodu na wszelke czynnosci zwigzane z zarzadza-
niem symulacja.

PGENESIS oferuje mozliwo$é tworzenia elementéw i uruchamiania po-
lecenn na wskazanych nodach symulacji. Stuzy do tego operator @.

I tak na przyktad polecenie:

readcell@l cell.p /CellA

spowoduje utworzenie komorki CellA przy pomocy mechanizmu cell re-
ader ale tylko na nodzie pierwszym uruchomionej symulacji.
Podobnie polecenie:

le@1

wyswietli nam elementy rezydujace na nodzie pierwszym.

Warto mie¢ na uwadze, ze polecenia wydane w PGENESIS bez operatora
@ wykonuja sie na wszystkich nodach.

PGENESIS inicjuje rowniez domys$lng zmienna mynode, w ktérej prze-
chowywany jest numer nodu na kazdym nodzie symulacji z osobna.

Jezeli chcemy wiec wykonac jakie§ polecenie, ale tylko w sytuacji gdy
znajdujemy sie na okreslonym nodzie - mozemy skorzystaé z instrukcji wa-
runkowe;j:

if ({mynode}==1)

create@l randomspike /input

setfield@l "~ min_amp 1 max_amp 1 rate 200 reset 1 reset_value O
end
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W tym wypadku stworzono generator losowych impulséw wejsciowych na pierw-
szym nodzie symulacji.
Polecenie

barrier

ustawia bariere na wszystkich nodach i powoduje, ze wszystkie one czekaja
na siebie wzajemnie az osiaggna okreslong linie w realizacji zadan zdefinio-
wanych w skrypcie.

Prosty skrypt, w ktorym tworzymy dwie komoérki CellA i CellB re-
azydujace odpowiednio na nodach 1 i 2 oraz generator losowych impulsow
na pierwszym nodzie przyjmuje nastepujaca postac:

paron -parallel -nodes 3
int NodesNumber = 3
setclock 0 0.0001

include functions.g
include pfunctions.g
include protodefs.g

if ({mynodel}==1)
readcell@l cell.p /CellA
end

if ({mynodel}==2)
readcell@2 cell.p /CellB
end

if ({mynode}==1)

create@l randomspike /input

setfield@1 ~ min_amp 1 max_amp 1 rate 200 reset 1 \
reset_value O

end

barrier

if ({mynodel}==1)

make_synapse /input /CellA/dend/Ex_channel 2 0

pmake_synapse /CellA/soma/spike 1 \
/CellB/dend/Ex_channel 2 15 0

end
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barrier

if ( {mynode}==1 )

create spikehistory net-history

setfield ~ filename CellA-atl.spike append O ident_toggle 1
addmsg /CellA/soma/spike net-history SPIKESAVE
end

barrier

if ( {mynode}==2 )

create spikehistory net-history

setfield ~ filename CellB-at2.spike append O ident_toggle 1
addmsg /CellB/soma/spike net-history SPIKESAVE

end

barrier

reset

step 0.1 -time
paroff

quit

Zauwazmy, ze kiedy jesteSmy na pierwszym nodzie — tworzymy synapse
z generatora losowych impulséw input do komérki CellA. Przy pomocy
funkcji pmake_synapse tworzymy potaczenie z komérki CellA do CellB.
Zapis wynikéw na dysk realizujemy na dwéch nodach, dla kazdej komorki
z osobna.

Na poczatku zkryptu dotaczamy don plik pfunctions.g zawierajacy
funckje réwnolegte:

function pmake_synapse(pre,npre,post,npost,weight,delay)
str pre,post

float weight,delay

int syn_num,npre,npost

raddmsg {pre} {post}@{npost} SPIKE
syn_num = {getfield@{npost} {post} nsynapses} - 1
setfield@{npost} {post} synapsel[{syn_num}].weight {weight} \
synapse [{syn_num}] .delay {delay}
echo {pre} ==>> {post} {weight} {delay}
end
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Zauwazmy, ze do przesylania wiadomosci miedzy nodami stuzy polecenie:
raddmsg

Pozostata cze$¢ funkeji jest analogiczna do klasycznej funkcji tworzacej sy-
napse miedzy dwoma neuronami. Pilik functions.g zawarty na poczatku
skryptu jest budowang przez nas od pierwszych rozdzialéw nieniejszej ksiaz-
ki biblioteka funkcji wtasnych uzytkownika GENESIS.

Gléwny skrypt programu konczy sie wytaczeniem réwnoleglizacji na wszyst-
kich weztach poleceniem:

paroff
Skrypty rownolegte uruchamiamy poleceniem:
pgenesis -nodes 3 -nox nazwa_skryptu.g

pamietajac, ze liczba nodéw zadeklarowanych na poczatku uruchamianego
skryptu powinna by¢ taka sama jak liczba nodéw podanych w parametrze
-nodes.

Po wykonaniu obliczen na dysku pojawia sie dwa pliki z zapisem aktyw-
nosci komorek: CellA.spike oraz CellB.spike.

Mamy namacalny dowdd, ze komorka stymulowana przez generator na no-
dzie pierwszym przekazala sygnaly do komérki na nodzie drugim, przy
czym oba nody niezaleznie od siebie zapisywaly aktywnosé¢ przechowywa-
nych na sobie komorek na dysk.

9.3. Przykladowa sie¢ rozlegta

Teraz zréwnoleglimy znany nam skadinad model zawierajacy dwie kwa-
dratowe (8 x 8) sieci neuronéw w taki sposob, aby kazda z nich rezydowala
ma odrebnym nodzie w symulacji. Siatki netl i net2 tworzymy wykonu-
jac polecenie createmap na nodach pierwszym i drugim, podobnie zreszta
czynimy z zapisem aktywnosci. Generator impulsow stymuluje pierwsza sie¢
i rezyduje na pierwszym nodzie. Sieci polaczone sa w obrebie samych siebie
z prawdopodobienistwem 0.1. Dodatkowo realizowane jest 10% polaczenia
petnego miedzy sieciami w kierunku od netl do net2. Model tworzony jest
przy pomocy przedtozonego tu skryptu:

paron -nodes 3 -parallel

float sep_x=0.001 // odl. komorek w kierunku x w [m]
float sep_y=0.001 // odl. komorek w kierunku y w [m]

float genrate=200
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setclock 0 0.000005
setclock 1 {1.0/{genrate}} // for generator

include functions-wizualizacja.g
include pfunctions.g
include protodefs.g

readcell cell.p /cell

if ({mynode} == 1)
createmap /cell /metl 8 8 -delta {sep_x} {sep_y}
end

if ({mynode} == 2)
createmap /cell /met2 8 8 -delta {sep_x} {sep_y}
end

if ({mynode} == 1)

create randomspike /input

setfield ~ min_amp 1 max_amp 1 rate {genrate} reset 1 \
reset_value O abs_refract 0

useclock /input 1

create spikehistory /input-spikes

setfield ~ filename input.spike append O ident_toggle 1
addmsg /input /input-spikes SPIKESAVE

end

if ({mynode} == 1)
connect_map /netl 8 8 0.1
end

if ({mynode} == 2)
connect_map /net2 8 8 0.1
end

if ({mynode} == 1)

pconnect_two_maps /netl 1 /net2 2 8 8 0.1

make_synapse /input /netl/cell[0]/dend/Ex_channel 10 0 O
end
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if ({mynode} == 1)
make_mapoutput /netl/cell netl.spike
end

if ({mynode} == 2)
make_mapoutput /net2/cell net2.spike
end

check
reset

step 1 -time

paroff
quit

przy czym do pliku zawierajacego biblioteke funkcji réwnoleglych uzytkow-
nika — pfunctions.g dopisano funkcje taczaca dwie mapy:

function //uwaga: ponizsze argumenty w jednej linii
pconnect_two_maps (netl, npre, net2, npost, nx, ny, prob)
int i,j, netdim

netdim = {nx} * {ny}

for (i=1;i<netdim;i=i+1)
for (j=1;j<netdim;j=j+1)

if ({rand 0 1} < {prob} )
pmake_synapse {netl}/cell[{i}]/soma/spike {npre} \
{net2}/cell[{j}]1/dend/Ex_channel {npost} \
1.8 1e-04
end
end
end

Po wykonaniu skryptu na dysku powstaja dwa pliki: netl.spike oraz
net2.spike z zapisem aktywnosci obu sieci symulowanych réwnolegle oraz
plik input.spike z historia pobudzen generatora.
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9.4. Kontrola symulacji

W tym miejscu warto opisaé¢ kilka prostych sztuczek, ktore mogg uta-
twi¢ programowanie réwnolegltych modeli w PGENESIS oraz zarzadzanie
symulacja. Tworzac rownoleglte modele nalezy pamietac, ze:

— struktury modelu, ktére charakteryzuja si¢ odrebnoscig i duza gesto-
Scia potaczen (na przyklad mikroobwody neuronalne) warto umieszczaé
na tych samych nodach,

— duzo czasu procesoréw marnujemy przesylajac wiadomosci miedzy no-
dami dlatego warto okresli¢ miejsca w modelu, w ktorych komunika-
cja bedzie ograniczona (np. rzadkie polaczenia miedzy mikroobwodami)
i to dla nich rezerwowa¢ miedzynodows wymiane informacji,

— optymalnym rozwigzaniem jest rozproszenie symulacji na tyle nodéw
iloma procesorami (rdzeniami) dysponujemy. Oczywiscie nalezy zacho-
waé umiar i nie ma sensu rozpraszanie sieci zawierajacej szes¢ prostych
komoérek na szesS¢ procesorow.

Kiedy uruchomimy juz symulacje warto sprawdzi¢ obciazenie poszczegdl-
nych procesoréw (lub rdzeni) maszyny. Przydatnym, aczkolwiek niezainsta-
lowanym od samego poczatku w Ubuntu programem jest htop. Instalujemy
go w najprostszy z mozliwych sposobdéw:

sudo apt-get install htop
i uruchamiamy poleceniem:
htop

Uruchomiony htop wyglada jak na Rys.

Czasami zdarzaja sie sytuacje, w ktorych chcemy sprawdzi¢ jak ditugo
wykonywal si¢ dany skrypt. Warto postuzyé¢ sie napisanym wlasnorecznie
w powloce bash skryptem start.sh o nastepujacej tresci:

#!/bin/bash

date > time.out

pgenesis -nodes 3 -nox nazwa_skryptu.g
date >> time.out

Kazdemu plikowi w systemie Linux mozna nadaé atrybut wykonywalno-
$ci, w tym wypadku wykonujac polecenie:

chmod +x start.sh

Chcac uruchomié¢ symulacje wykonujemy skrypt (pamigtamy, ze musi on
rezydowaé¢ w katalogu z modelem):

./start.sh
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Rysunek 9.1. Réwnomierne obciazenie obu rdzeni procesora podczas wykonywania
symulacji réwnoleglej

i czekamy na zakonczenie.
W wyniku dziatania skryptu na dysku powstaje dodatkowy plik ti-
me.out o przykladowej tresci:

Mon Aug 23 18:29:01 CEST 2010
Mon Aug 23 19:56:54 CEST 2010

z ktérego tatwo mozna wyciagnaé informacje o czasie wykonania symulacji
z doktadnoécia do jednej sekundy.

9.5. Podsumowanie

Przedstawiono metodologie réwnoleglizacji skryptow GENESIS do pracy
w Srodowisku PGENESIS. Nalezy zapamietaé, ze semantycznie do réwno-
leglizacji stuzy zaledwie kilka polecen, metody optymalnego zréwnoleglania
modeli zalezg za$ od wyobrazni programisty. Potrafimy tworzy¢ elementy
i uruchamiaé¢ polecenia PGENESIS na wskazanych nodach maszyny réwno-
legtej. Potrafimy tez przesyta¢ informacje miedzy nodami.

9.6. Zadania

Zadanie 1

Stworz sie¢ zawierajaca trzy komorki: Cell A, CellB oraz CellC. Umiesé¢
poszczegblne komorki na réznych nodach w symulacji. Potacz komoérke Cel-
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1A z CellB oraz CellB z CellC. Zaplanuj zapis wynikow na dysk wyko-
nywany przez poszczegblne nody. Uruchom symulacje na czterech nodach.
Przy pomocy polecenia le wyswietl elementy na poszczegdlnych nodach.

Zadanie 2

Zmodyfikuj model przedstawiony w tym rozdziale w taki sposéb, aby
tworzyl prostokatne siatki neuronéw. Wykonaj symulacje i zmierz czas ich
trwania.

Zadanie 3

Sprawdz czas obliczen symulacji modelu z Zadania 2 dla kilku réz-
nych wartosci prawdopodobienstwa utworzenia synapsy miedzy neuronami
poszczegblnych sieci.
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10. Dostosowywanie GENESIS

10.1. Wprowadzenie

W tym rozdziale nauczymy sie ingerowa¢ bezposrednio w kod zrédtowy
GENESIS. Nie jest to sprawa banalna i wymaga troche doswiadczenia. Jed-
nak glebsza analiza problemu modyfikacji symulatora pozwala nam stworzy¢
zupelnie nowe mozliwoéci, a jedynym ograniczeniem bedzie tu wyobraznia.
Po uwaznej lekturze niniejszego rozdzialu kazdy czytelnik bedzie mégt po-
czué¢ dume GENESIS-owego hakera.

10.2. Prawdopodobienstwo egzocytozy

Mimo, ze w dotychczasowych modelach wykorzystywaliémy generator
liczb pseudolosowych na przykitad do generowania impulséw wejsciowych
to dzialanie modeli przez nas projektowanych bylo z grubsza rzecz biorac
wysoce powtarzalne. W naturze o taka powtarzalno$é¢ trudno, zywy orga-
nizm nie jest automatem dzialajacym w sposob tak precyzyjny jak werk
mechanicznego zegarka.

Wiele ciekawych proceséw rozgrywa sie na poziomie synaptycznym. Sy-
gnal z komérki A przekazywany jest do komoérki B w wyniku zajécia tak
zwanej egzocytocy. Upraszczajac nieco to niezwykle skomplikowane zjawi-
sko mozna powiedzieé¢, ze egzocytoza to przekazanie pewnego pecherzyka
(neuroprzekaznika) z jednej kolbki synaptycznej do drugiej. Okazuje sie, ze
mimo sprzyjajacych warunkéw — egzocytoza nie za kazdym razem ma miej-
sce. Zdefiniujmy wiec prawdopodobienstwo zajscia egzocytocy jako szanse
na przekazanie sygnalu miedzy neuronami nawet wtedy, gdy wszelkie wa-
runki (w tym wypadku waga polaczenia synaptycznego) temu sprzyjaja.

Do tej pory kazda synapse okreslaly dwa parametry: waga — weight
oraz opdznienie — delay. Zmodyfikujemy kod GENESIS w taki sposob, by
do funkcji tworzacej polaczenie synaptyczne trzeba bylo dodaé¢ parametr
okreslajacy prawdopodobienistwo — probability.

10.3. Edycja plikéw zrédlowych

W tym celu nalezy zmieni¢ nieco dwa pliki w kodzie zrodlowym GENE-
SIS. Na poczatku musimy dostaé si¢ do katalogu genesis/src i wykonaé
polecenie:

make clean

Nastepnie w katalogu genesis/src/newconn odnajdujemy plik new-
conn_struct.h i dopisujemy do linii 146 jedna linijke kodu (nie zapomina-
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jac o przelamaniu jej popularnym backslashem) w taki sposéb, by interesu-
jacy nas fragment pliku (linie od 143 do 147) wygladaly nastepujaco:

#define SYNAPSE_TYPE \
MsgIn* mi; \
float weight; \
float delay; \
float probability; // by gmwojcik 31.08.2011

Warto doda¢ komentarz z wlasnym pseudonimem, zeby pdzniej byto wia-
domo co i gdzie dopisaliémy.

Nastepnie odnajdujemy plik synchan.c znajdujacy sie w tym samym
katalogu i rozpoczynamy taniec z prawdopodobiefistwem (linia 343) w taki
sposob, by linie od 343 do 354 wygladaly jak tu:

if ( frandom(0,1.0) <= channel->synapse[syn].probability )
channel->activation += channel->synapsel[syn].weight / dt;
} //modified by gmwojcik 31.08.2011

if ( next_event != NULL) {
if (nothsolve) {
—-next_event->time;
} else {
channel->time_last_event=SimulationTime();
}
}
}

Pamietamy o dopisaniu odpowiedniego komentarza do dopisanej linijki.
W gruncie rzeczy dopisaliSmy tylko jedna linie kodu w jezyku c++ — wywo-
tanie odpowiedniej, zaleznej od pola probability instrukcji warunkowe;j.

Po zapisaniu obu plikéw przechodzimy z powrotem do katalogu genesi-
s/src i dokonujemy ponownej kompilacji i instalacji §rodowiska:

make nxall
make nxinstall

w tym wypadku bez XODUS. Pamigtajmy, ze gdybysmy chcieli korzystac
z GENESIS w wersji rownolegtej — nalezy rowniez przekompilowac i zainsta-
lowaé¢ ponownie PGENESIS. Teraz jednak bedzie nam troche tatwiej gdyz
odpadaja nudne i zmudne czynnoéci zwigzane z dopisywaniem $ciezek doste-
pu do .bashrc i kopiowaniem plikéw typu .simrc do katalogu domowego.



106

10. Dostosowywanie GENESIS

10.4. Konsekwencje

W konsekwencji otrzymaliSmy zupelnie nowy, taki tylko nasz GENE-
SIS z nowym typem synapsy uwzgledniajacym prawdopodobienstwo zajscia
egzocytozy. W podobny sposéb mozna definiowaé sobie inne typy synaps.

Niestety skrypty napisane do tej pory nie beda juz dziala¢ w takim
symulatorze bez drobnej modyfikacji. (Dlatego warto rozwazy¢ kompilacje
zmodyfikowanego GENESIS w jakim$ innym katalogu). Od tej pory funkcja
tworzaca synapse musi by¢ wzbogacona o trzecie pole — probability:

function make_synapse(pre,post,weight,delay, prob)
str pre,post

float weight,delay

int syn_num

addmsg {pre} {post} SPIKE

syn_num = {getfield {post} nsynapses} - 1

setfield {post} synapse[{syn_num}].weight {weight} \
synapse [{syn_num}] .delay {delay} \
synapse [{syn_num}] .probability {prob}

echo {pre} "--->" {post} {weight} {delay} {prob}

end

i zauwazmy, ze chociaz nie musimy tego robi¢ — wyswietlamy wartos$¢ praw-
dopodobienstwa obok wagi i opdznienia.

Wywotania takiej funkcji gdzies z poziomu skryptu w modelu maja po-
stac:

make_synapse /cell_A/soma/spike \
/cell_B/dend/Ex_channel 2.8 1e-04 0.95

make_synapse /cell_A/soma/spike \
/cell_B/dend/Ex_channel 2.8 1le-04 0.25

dla prawdopodobienstw egzocytozy ustawionych odpowiednio na p = 0,95
ip=20,25

Na potrzeby niniejszego rozdziatu stworzono model zawierajacy dwie ko-
mérki potaczone ze soba synapsa o takich wtasnie prawdopodobienstwach
egzocytozy. Symulacje uruchomiono dwa razy (dla kazdej wartosci po jed-
nym razie). Przebieg potencjalu na drugiej komorce przedstawiaja Rys.
i [10.2] Co oczywiste — komodrka zasilana synapsa o mniejszym prawdo-
podobienstwie p ,pika” rzadziej, jednak przy odpowiednio dlugim czasie
symulacji biologicznej aktywnosci systemu — za kazdym razem inaczej.
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Rysunek 10.1. Przebieg potencjalu btony komoérkowej neuronu pobudzanego sy-
napsa o prawdopodobienstwie zajécia egzocytozy p = 0,95

10.5. Podsumowanie

Przedstawiono krok po kroku proces ingerencji w kod zrédtowy GENE-
SIS prowadzacy do zmiany charakterystyki typowej synapsy. Uzaleznienie
przekazywania sygnatu od wprowadzenia prawdopodobienstwa egzocytozy
ma istotne znaczenie wszedzie tam gdzie chcemy badaé statystyke zachowa-
nia modelu zwierajacego duzg liczbe symulowanych neuronéw. W podob-
ny spos6b mozna pomysle¢ o innych typach synaps i zaimplementowaé je
we wskazane miejsca w kodzie.

10.6. Zadania

Zadanie 1

Skompiluj zmodyfikowana wersje GENESIS zawierajaca prawdopodo-
biefistwo zajscia egzocytozy wbudowane w synapse. Mozesz zbudowaé nowa
wersje GENESIS w innym katalogu niz oryginal, pamietaj jednak wtedy
o zmianie Sciezki w .bashrc i podmianie plikow typu .simrc w katalogu
domowym.

Zadanie 2

Przeprowadz kilka symulacji wybranego sposréd omawianych w tej ksiaz-
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Rysunek 10.2. Przebieg potencjalu btony komoérkowej neuronu pobudzanego sy-
napsa o prawdopodobienstwie zajécia egzocytozy p = 0,25

ce modelu z uwzglednieniem prawdopodobienstwa zajécia egzocytozy. Po-
réwnaj rozmiary plikéw z zapisem aktywnosci komoérek dla réznych wartosci
prawdopodobienstwa.
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11. Uwagi konicowe

W ksiazce przedstawiono kurs modelowania w symulatorze GENESIS,
zaréwno w jego wersji klasycznej jak i w réwnoleglej.

Czytelnik mial okazje poznaé¢ podstawy modelowania komérek biologicz-
nych ze szczegbélnym uwzglednieniem modelu Hodgkina—Huxleya.

W przypadku GENESIS praktyke modelowania rozpoczyna si¢ od two-
rzenia modeli pojedynczych komorek, a nastepnie ich sieci. Duze sieci neuro-
noéw biologicznych mozna programowaé¢ w taki sposéb, by symulacja mogta
odbywac sie na klastrach obliczeniowych.

Przedstawiono metody wizualizacji aktywnosci sieci z wykorzystaniem
wbudowanych w GENESIS narzedzi, a takze programéw zewnetrznych ofe-
rujacych sporo mozliwosci w generowaniu reprezentacji dynamiki pojedyn-
czych komérek.

Wskazano tez mozliwe kierunki modyfikowania oprogramowania w celu
uzyskania nowych funkcjonalnoéci.

Ksiazka pozwala w sposéb tagodny wejsé w problematyke modelowania
w GENESIS, autor wyraza nadzieje iz stanie si¢ ona przydatnym podrecz-
nikiem dla wszystkich tych, ktérzy pragna rozpoczaé badania w zakresie
neuronauki obliczeniowej.
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A. Wazniejsze modele autora

Opis modeli wykorzystywanych w prowadzonych przez autora ekspery-
mentach zaczerpnieto z monografii pod tytutem ,Obliczenia plynowe w mo-
delowaniu mozgu” [20)]. Zainteresowani czytelnicy mogq znaleZé tam réwniez
szczegolowo opisane wyniki badan prowadzonych przez autora na przedsta-
wianych tu modelach.

A.1. Model kory barylkowej szczura

Model kory barytkowej szczura zbudowano w srodowisku GENESIS.
Na siatce 45 x 45 skonstruowano sieé¢ zawierajaca 2045 neurondéw, nazywana
od tej pory modelem 2k [20].

Para liczb naturalnych z przedzialu od 0 do 44 w sposob jednoznacz-
ny identyfikowala kazdy neuron. Wszystkie komoérki podzielono na 22 sek-
cje zwane warstwami numerowanymi od 1 do 22 (rys. . Komunikacje
miedzy neuronami ustalono wedlug okreslonych zasad. Sygnal z kazdej ko-
morki z warstwy m byl transmitowany na zewnatrz do komorek z warstw
m4+1,m+ 2,...,m + Ng, gdzie N, zwane liczba sasiedztw, bylo zawsze
nie wigksze niz liczba warstw. Struktura taka do$¢ wiernie nasladowata ge-
ste pierscienie dendrytyczne w barylkach kory. Poniewaz symulacje byty
prowadzone z wykorzystaniem szesnastu procesoréw, caly siatke podzielono
na 15 stref, zostawiajac jeden procesor do zarzadzania cala symulacja [20].

Potaczenia synaptyczne w modelu charakteryzowane sa przez dwa para-
metry zalezne od odlegto$ci miedzy neuronami: wage w = wp/|m — n| oraz
opdznienie 7 = |m—n|10~* s. parametr wo we wszystkich symulacjach przyj-
mowatl wartos¢ 2. Uklad jest stymulowany za poérednictwem generatora wy-
sytajacego impulsy z czestotliwoscia f=80 Hz, podtaczonego do centralnego
neuronu Na3 23. Stymulacja ta przypomina pobudzanie szczurzego wibry-
sa za pomoca rurki kapilarnej lub elektrody wpietej bezposrednio w kore
czuciowo-somatyczna [20].

Dodatkowo symulacja charakteryzowana jest przez parametr T' oznacza-
jacy czas biologicznej pracy uktadu, u nas w wiekszosci przypadkéw T'= 15 s
[20].

Pobudzenie neuronu centralnego byto transmitowane zgodnie z architek-
tura potaczen. Jako lawine potencjalu czynnosciowego zdefiniowano liczbe
neuronéw w stanie wzbudzenia (wystrzeliwujacych iglice potencjatu czyn-
nos$ciowego) w okreslonym interwale czasowym ¢ = 1 ms [20].

A.2. Model kory wzrokowej zawierajacej maszyny LSM

Podstawowe serie eksperymentow polegajacych na badaniu zdolnosci se-
paracji maszyn plynowych prowadzono na modelu ukladu wzrokowego za-
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Rysunek A.1. Schemat modelu 2k. Warstwy oznaczono liniami pogrubionymi, neu-

ron stymulujacy czarnym kwadratem. Wspdtrzedne neuronéw zaznaczono na gorze

oraz po lewej stronie schematu. W kazdej strefie (zaznaczonej na dole) znajduja sie
trzy kolumny neuronéw [20]
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wierajacego okoto szesnastu tysiecy komérek HH i stad nazywanego mode-
lem 16k. W tym modelu (rys.|A.2) siatkéwka zbudowana jest z 256 neuronéw
rozmieszczonych na siatce 16 x 16 [20]. Siatkéwka zostata podzielona na 16

rYyovoy

Rysunek A.2. Schemat modelu 16k. Zaznaczono przykladowsa strukture potaczen
miedzy kolumnami [20]

pol recepcyjnych rozpietych na siatce o wymiarach 4 x 4. Kazde z pdl re-
cepcyjnych (réwniez o wymiarach 4 x 4) jest polaczone z jedng z szesnastu
kolumn HHLSM (Hodgkin—Huxley Liquid State Machine) odpowiadajacych
ciatu kolankowatemu bocznemu i fragmentowi kory wzrokowej. W obrebie
kolumn HHLSM zaaranzowano strukture (rys. odpowiadajaca rzeczy-
wistym potaczeniom miedzywarstwowym w korze mozgu. Na rys. warto
zwrdcié uwage na polaczenie zwrotne wyprowadzone z warstwy L6 do LGN.
Kazda kolumna HHLSM jest niezalezna maszyna pltynowa i zawiera 1024
komérki rozmieszczone na tréjwymiarowej siatce 8 x 8 x 16. Kazda z warstw
L2-L6 zawiera neurony potozone na siatce 8 x 8 x 3. Warstwa LGN to uktad
o wymiarach 8 x 8 x 1 [20].

Neurony w obrebie warstwy moga by¢ polaczone na zasadzie kazdy z kaz-
dym (co niemal gwarantuje szybka synchronizacje uktadu) lub z ustalonym
prawdopodobienstwem. Warstwy A i B laczy sie wedlug reguly polegaja-
cej na tym, ze ostatnia podwarstwa warstwy A jest polaczona z pierwsza
podwarstwa warstwy B. Podwarstwy maja wymiary 8 x 8 x 1 [20].

W zgodzie z wiedza zaczerpnicta ze Zrodel neurofizjologicznych oraz
z teoriag Maassa w obrebie kazdej kolumny ustalono 80% potaczen wzbu-
dzajacych i 20% polaczen hamujacych. Neurony tworzace cala strukture
byty stosunkowo prostymi komérkami typu HH zawierajacymi cialo i dwa
dendryty kazda [20].

W zaleznoéci od konkretnego eksperymentu komputerowego kolumny
HHLSM mogly by¢ potaczone ze sobg lub tez nie, a twérca modelu przewi-
dzial mozliwos¢ dodawania potaczen miedzy komoérkami w szybki i prosty
spos6b [20].
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Rysunek A.3. Schemat kolumny HHLSM z zaznaczong struktura potaczen [20]

Tak modelowany uktad wzrokowy moze zosta¢ nastepnie poddany eks-
pertyzom rozmaitych warstw odczytujacych. Co wiecej, struktura modelu
gwarantuje dobrg réwnoleglizacje oraz bezproblemowe zwigkszenie liczby
symulowanych komérek do okolo 256 tysiecy (model 256k) przy dokonaniu
podziatu siatkéowki na pola recepcyjne zawierajace tylko jedna komorke.
Przyktadowo na rys. przedstawiono schemat modelu 64k, w ktérym
siatkéwke stanowig 64 pola recepcyjne o wymiarach 2 X 2, rozmieszczone
na siatce 8 x 8 i potaczone z 64 kolumnami HHSLM [20].

YooYy

Rysunek A.4. Schemat modelu 64k. Zaznaczono przyktadows strukture potaczen
miedzy kolumnami [20]
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W tym dodatku przedstawiono wybrane wykresy pochodzace z badan
opublikowanych przez autora w latach 2005-2012. W celu szczegblowego
zapoznania sie ze znaczeniem uzyskanych wynikéw odsytamy do artykutéw.
W drugiej czesci dodatku przedstawiono angielskie streszczenia najwazniej-
szych z nich.
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Rysunek B.1. Typowe wzmocnienie odlegloéci stanéw w maszynie LSM ma przy-
kladzie zdolnosci separacji siatkéwki oraz kolumny kory (za: [20])

B.2. Streszczenia artykuléow

G. M. Wojcik, “Self-organising criticality in the simulated
models of the rat cortical microcircuits,” Neurocomputing, no.
79, pp. 61-67, 2012.

Two and three dimensional models of rat barrel and somatosensory cor-
tex were simulated. Hoddgkin—Huxley and Leaky-Integrate-and-Fire neu-
rons were used to the construction of the networks in GENESIS and PCSIM
environments. The dynamics of both models was analysed. Self-organising
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Rysunek B.3. Zdolno$é¢ separacji maszyny LSM w zaleznosci od stalej czasowej
blony komérkowej (za: [20])
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Rysunek B.4. Przyktadowe odwzorowanie dynamiki neuronu w przestrzeni fazowej
potencjalu — przewidywalna trajektoria (za: [20])
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Rysunek B.5. Przykladowe odwzorowanie dynamiki neuronu w przestrzeni fazowej
potencjatu — trajektoria bardziej rozmyta niz na rys. (za: [20])
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Rysunek B.6. Przykladowe odwzorowanie dynamiki neuronu w przestrzeni fazowej
potencjatu — trajektoria $wiadczaca o nieliniowej dynamice wybranego neuronu (za:
[201)
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nizujacej sie krytycznosci w korze barytkowej szczura (za: [20])
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Rysunek B.8. Skala samoorganizujacej sie krytycznosci w zaleznosci od prawdopo-
dobienstwa egzocytozy w sieci typu 2.5k (za: [20])
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Rysunek B.9. Zjawiska SOC dla ustalonej liczby polaczen i zmieniajacego sie praw-
dopodobienstwa egzocytozy i zmiennej liczby polaczen miedzy strefami modelu 2.5k
(za: [20])
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criticality phenomena were found. Profound investigations of this behaviour
showed its dependence not only on the number of connections, but also on
the simulated network architecture originating, e.g., from varying probabi-
lity of exocytosis or synapse creation in the selected areas of the network.
For 2-D model the results were compared to that obtained for smaller mo-
dels and analysis of this comparison is presented to some extent. The three
dimensional model of the rat primary somatosensory cortex based on the
ensemble of Liquid State Machines. The results obtained from that model
are in good agreement with the dynamics recorded in neurophysiological
experiments on real brain [2§].

G. M. Wojcik, “Electrical parameters influence on the dynamics
of the hodgkin-huxley liquid state machine,” Neurocomputing,
no. 79, pp. 68— 78, 2012.

The model of mammalian cortical hypercolumn was simulated using li-
quid state machines built of simple Hodgkin—Huxley neurons. The influence
of cell electrical parameters on the system dynamics was investigated. The
systematic analysis of the hypercolumn separation ability in the function
of time constants, cell membrane capacitance, resistance, Hodgkin—Huxley
equilibrium potential and sodium and potassium channel conductances was
performed. Optimal ranges of time constants for the most effective compu-
tational abilities of the model were estimated [29].

G. M. Wojcik and W. A. Kaminski, “Self-organised criticality as
a function of connections’ number in the model of the rat
somatosensory cortex,” in Computational Science — ICCS 2008,
vol. 5101 of Lecture Notes in Computer Science, pp. 620-629,
Springer, 2008.

The model of the part of the rat somatosensory cortex was examined.
Large network of Hodgkin-Huxley neurons was simulated and the modular
architecture of this structure divided into layers and sub-regions was imple-
mented. High degree of complexity required effective parallelisation of the
simulation. In this article the results of the parallel neural computations are
presented. An occurrence of the self-organised criticality was observed and
its characteristics as a function of the connections number was investiga-
ted. It was proved that frequency of the so-called spike potential avalanches
depends on the density of inter-neuron connections. In addition some bench-
marking runs were conducted and parallelisation effectiveness is presented
to some extent [30].
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G. M. Wojcik and W. A. Kaminski, “Nonlinear behaviour in
mpi- parallelised model of the rat somatosensory cortex,”
Informatica, vol. 19, no. 3, pp. 461-470, 2008.

Mammalian brains consisting of up to 10'! neurons belong to group
of the most complex systems in the Universe. For years they have been
one of the hardest objects of simulation. There are many different appro-
aches to modelling of neurons, but one of the most biologically correct is
Hodgkin-Huxley (HH) model. Simulations that require solving a large num-
ber of nonlinear differential equations (fundamental in HH model) are always
time and power consuming. The structures discussed in this article simulate
a part of the rat somatosensory cortex. We use a modular architecture of
the network divided into layers and sub-regions. Because of a high degree
of complexity effective parallelisation of algorithms is required. We propose
method of parallelisation for the network and the results of simulations using
GENESIS parallelised for MPI environment are presented. An occurrence
of nonlinear behaviour is demonstrated. Most notably, in large biological
neural networks consisting of the HH neurons, nonlinearity is shown to ma-
nifest itself in the Poincaré sections generated for the varying value of neural
membrane’s potential [31].

G. M. Wojcik, W. A. Kaminski, and P. Matejanka,
“Self-organised criticality in a model of the rat somatosensory
cortex,” in Parallel Computing Technologies, vol. 4671 of
Lecture Notes in Computer Science, pp. 468—475, Springer, 2007.

Large Hodgkin-Huxley (HH) neural networks were examined and the
structures discussed in this article simulated a part of the rat somatosen-
sory cortex. We used a modular architecture of the network divided into
layers and sub-regions. Because of a high degree of complexity effective pa-
rallelisation of algorithms was required. The results of parallel simulations
were presented. An occurrence of the self-organised criticality (SOC) was
demonstrated. Most notably, in large biological neural networks consisting
of artificial HH neurons, the SOC was shown to manifest itself in the frequ-
ency of its appearance as a function of the size of spike potential avalanches
generated within such nets. These two parameters followed the power law
characteristic of other systems exhibiting the SOC behaviour [32].



B.2. Streszczenia artykulow

127

G. M. Wojcik and W. A. Kaminski, “Liquid state machine and
its separation ability as function of electrical parameters of cell,”
Neurocomputing, vol. 70, no. 13—-15, pp. 2593-2697, 2007.

Large artificial Hodgkin-Huxley neural networks are examined. The struc-
tures discussed in this article simulate a part of the cortex of the mammalian
visual system. We use a modular architecture of the cortex divided into
sub-regions. Results of parallel simulations based on the Liquid Computing
theory are presented in some detail. Separation ability of groups of neural
microcircuits is observed. We check if such property depends on electrical
parameters of particular cells. Properties Liquid Sate Machine’s are derived
from the types of neurons used for simulations. They are compared and
discussed to some extent [33].

G. M. Wojcik and W. A. Kaminski, “Liquid computations and
large simulations of the mammalian visual cortex,” in
Computational Science — ICCS 2006, vol. 3992 of Lecture Notes
in Computer Science, pp. 94-101, Springer, 2006.

Large artificial Hodgkin-Huxley neural networks are examined. The struc-
tures discussed in this article simulate the cortex of the mammalian vi-
sual system. We use a modular architecture of the cortex divided into
sub-regions. Results of parallel simulations based on the liquid computing
theory are presented in some detail. Separation ability of groups of neural
microcircuits is observed. We show that such property may be useful for
explaining some edge or contrast detection phenomena [34].

G. M. Wojcik and W. A. Kaminski, “Large scalable simulations
of mammalian visual cortex,” in Parallel Processing and Applied
Mathematics, vol. 3911 of Lecture Notes in Computer Science,
pp. 399— 405, Springer, 2005.

Large artificial neural networks are examined. Structures discussed in
this article simulate the cortex of mammalian visual system and its dyna-
mics. Simulations of thousands of Hodgkin-Huxley neurons always require
high computational power. Discussion of such networks parallelisation is
presented in some detail. Analysis of simulation time, algorithm’s speedup
as a function of processors’ number and density of connections is discussed
as well [35].
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Rysunek C.1. Klaster Clusterix i autor stojacy obok klastra. Zbudowany z dwu-

nastu dwuprocesorowych komputeréw wyposazonych kazdy w dwa procesory Ita-

nium 2 1,4 GHz, 4 GB pamieci operacyjnej i 74 GB pamieci dyskowej. Maszyna

stanowita lubelski modut Krajowego Klastra Linuksowego [36] wdrazanego w latach

2004-2005. Autor w ramach projektu Clusterix przeprowadzal symulacje wielkiej

skali kory moézgowych ssakéw wykorzytujac pakiet GENESIS w wersji réwnoleglej.
(Fot. Stefan Ciechan)
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Rysunek C.2. Autor skryptu z tworca GENESIS Davidem Beemanem oraz jego
zona w sierpniu 2001 podczas szkoly EU Advanced Course in Computational Neu-
roscience w Obidos w Portugalii
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